

中华人民共和国行业标准

NB/T 47042—2014 代替JB/T 4731—2005

图 式 容器

Horizontal vessels on saddle supports

2014-06-29 发布

2014-11-01 实施

目 次

前	前言	72
引	引言	
	1 范围	
2	2 规范性引用文件	76
3	3 术语和定义	76
4	4 通用要求	76
	5 材料	
6	6 结构	81
7	7 强度计算	82
8	8 制造、检验与验收	101
附	附录 A (规范性附录) 符合性声明	103
附	附录 B(资料性附录) 附加载荷作用时对称双鞍座卧式容器强原	更及稳定性校核计算104
附	附录 C(资料性附录) 非对称设置双鞍座卧式容器的强度与稳定	E性校核计算 ······110
附	附录 D(资料性附录) 对称设置三鞍座卧式容器的强度与稳定	生校核计算115

前 言

本标准按GB/T 1.1—2009《标准化工作导则 第1部分:标准的结构和编写》给出的规则起草。本标准代替JB/T 4731—2005《钢制卧式容器》,与JB/T 4731—2005相比,主要变化如下:

- ——增加了引言;
- ——适用范围增加了有色金属制卧式容器;
- ——增加了规范性附录"符合性声明";
- ——增加资料性附录"非对称设置双鞍座卧式容器的强度与稳定性校核计算";
- ——增加资料性附录"对称设置三鞍座卧式容器的强度与稳定性校核计算";
- ——相关技术内容按照TSG R0004—2009《固定式压力容器安全技术监察规程》、GB 150.1~150.4《压力容器》的要求进行了调整。

本标准由全国锅炉压力容器标准化技术委员会(SAC/TC 262)提出并归口。

本标准起草单位:中国特种设备检测研究院、全国化工设备设计技术中心站、华陆工程科技有限责任公司、中国石化工程建设有限公司、中国寰球工程公司、中国天辰工程公司、甘肃蓝科石化高新装备股份有限公司。

本标准主要起草人:陈朝晖、秦叔经、杨国义、李世玉、尹立军、段瑞、王新京、张迎恺、刘福录、黄正林、张学恭、曲建平、常平江、邹建东。

本标准由全国锅炉压力容器标准化技术委员会(SAC/TC 262)负责解释。

本标准所代替标准的历次版本发布情况:

- ----GB 150-1989《钢制压力容器》第8章;
- ——JB/T 4731—2005°

引 言

本标准是全国锅炉压力容器标准化技术委员会(以下简称"委员会")负责制定和归口的通用技术标准之一,用以规范在中国境内建造或使用的卧式容器设计、制造、检验和验收的相关技术要求。

本标准的技术条款包括了卧式容器建造过程(即指设计、制造、检验和验收工作)中应遵循的推荐性条款。由于本标准没有必要、也不可能囊括适用范围内卧式容器建造中的所有技术细节,因此,在满足法规所规定的基本安全要求的前提下,不应禁止本标准中没有特别提及的技术内容。本标准不能作为具体卧式容器建造的技术手册,亦不能替代培训、工程经验和工程评价。工程评价是指由知识渊博、娴于规范应用的技术人员所做出针对具体产品的技术评价。工程应用一旦采用了本标准,其工程评价应符合本标准的相关技术要求,不得违反本标准中的禁止性条款。

本标准不限制实际工程设计和建造中采用先进的技术方法,但工程技术人员采用先进的技术方法时应能做出可靠的判断,确保其满足本标准的基本安全要求,特别是关于强度、稳定性计算公式等的设计规定。

本标准规定的技术方法和技术要求不涉及任何专利。但注意本标准的工程应用可能会涉及特定 专利,本标准的发布机构不承担识别这些专利的责任。

本标准既不要求也不禁止设计人员使用计算机程序实现压力容器的分析或设计,但采用计算机程序进行分析或设计时,除应满足本标准要求外,还应确认:

- 1) 所采用程序中技术假定的合理性;
- 2) 所采用程序对设计内容的适应性;
- 3) 所采用程序输入参数及输出结果用于工程设计的正确性。

对于标准技术条款的询问应以书面形式向委员会秘书处提交,并有义务提供可能需要的资料。与标准条款没有直接关系或不能被理解的询问将视为技术咨询的范畴,委员会有权拒绝回答。

对于未经委员会书面授权或认可的其他机构对标准的宣贯或解释所产生的理解歧义和由此产生的任何后果,委员会将不承担任何责任。

器容法個

1 范围

- 1.1 本标准规定了金属制卧式容器(以下简称容器)的设计、制造、检验和验收等要求。
- 1.2 本标准适用的设计压力
- 1.2.1 钢制容器设计压力不大于 35MPa。
- 1.2.2 其他金属材料制容器按相应引用标准的规定。
- 1.3 本标准适用的设计温度范围
- 1.3.1 设计温度范围: -269℃~900℃。
- 1.3.2 容器的设计温度按本标准相应引用标准中列入材料的允许使用温度确定。
- 1.4 本标准适用的结构形式
- 1.4.1 承受均布载荷和附加载荷的双鞍座支承的卧式容器。
- 1.4.2 承受均布载荷的对称布置的三鞍座支承的卧式容器。
- 1.4.3 本标准适用范围内的特定结构容器以及铝、钛、铜、镍及镍合金、锆制容器, 其结构形式和适用范围还应满足下述标准的相应要求:
 - a) JB/T 4734《铝制焊接容器》;
 - b) JB/T 4745《钛制焊接容器》;
 - c) JB/T 4755《铜制压力容器》;
 - d) JB/T 4756《镍及镍合金制压力容器》;
 - e) NB/T 47011《锆制压力容器》。
- 1.5 不适用本标准的容器
- 1.5.1 《移动式压力容器安全技术监察规程》管辖的容器。
- 1.5.2 核能装置中存在中子辐射损伤失效风险的容器。
- 1.5.3 直接火焰加热的容器。
- 1.5.4 搪玻璃容器和制冷空调行业中另有国家标准或行业标准的容器。
- 1.5.5 带夹套的容器。
- 1.6 容器界定范围
- 1.6.1 容器与外部管道连接:
 - a) 焊接连接的第一道环向接头坡口端面:
 - b) 螺纹连接的第一个螺纹接头端面;
 - c) 法兰连接的第一个法兰密封面:
 - d) 专用连接件或管件连接的第一个密封面。
- 1.6.2 接管、人孔、手孔等的承压封头、平盖及其紧固件。
- 1.6.3 非受压元件与受压元件的连接焊缝。
- 1.6.4 直接连接在容器上的非受压元件如鞍式支座、支座加强圈等。
- 1.6.5 容器的超压泄放装置。

2 规范性引用文件

下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。

GB 150.1压力容器 第1部分: 通用要求GB 150.2压力容器 第2部分: 材料GB 150.3压力容器 第3部分: 设计

GB 150.4 压力容器 第4部分:制造、检验和验收

GB/T 700 碳素结构钢

GB/T 1591 低合金高强度结构钢

JB/T 4712.1 容器支座 第1部分: 鞍式支座

 JB/T 4734
 铝制焊接容器

 JB/T 4745
 钛制焊接容器

JB/T 4755 铜制压力容器

JB/T 4756 镍及镍合金制压力容器

NB/T 47002(所有部分) 压力容器用爆炸焊接复合板

NB/T 47003.1 钢制焊接常压容器

TSG R0004 固定式压力容器安全技术监察规程

3 术语和定义

GB 150.1中界定的术语和定义适用于本标准。

4 通用要求

- 4.1 通则
- 4.1.1 容器的设计、制造、检验和验收除应符合本标准规**定外,还应遵**守国家颁布的有关法律、 法规和安全技术规范。
- 4.1.2 容器的设计、制造单位应建立健全的质量管理体系并有效运行。
- 4.1.3 《固定式压力容器安全技术监察规程》管辖范围内的压力容器设计和制造应接受特种设备 安全监察机构的监察。
- 4.2 资质与职责
- 4.2.1 资质
- 4.2.1.1 《固定式压力容器安全技术监察规程》管辖范围内的压力容器,其设计单位应持有相应特种设备设计许可证,制造单位应持有相应特种设备制造许可证。
- 4.2.1.2 常压卧式容器的设计、制造单位的资质要求应符合 NB/T 47003.1 的有关规定。
- 4.2.2 职责
- 4.2.2.1 用户或设计委托方的职责

容器的用户或设计委托方应当以正式书面形式向设计单位提出容器设计条件,其中至少包含以下内容:

- a) 容器设计所依据的主要标准和规范:
- b) 操作参数(包括工作压力、工作温度范围、交变载荷条件、液位高度、接管载荷等);
- c) 容器使用地及自然条件(包括环境温度、抗震设防烈度、风和雪载荷等);
- d) 介质组分与特性;
- e) 预期使用年限;
- f) 几何参数和管口方位;
- g) 设计需要的其他必要条件。

4.2.2.2 设计单位的职责:

- a) 设计单位应对设计文件的正确性和完整性负责;
- b) 设计文件中至少应包括强度计算书、设计图样、制造技术条件、风险评估报告(相关法规 或设计委托方要求时),必要时还应包括安装与使用维修说明书;
- c) 《固定式压力容器安全技术监察规程》管辖范围内压力容器的设计总图应盖有特种设备设计许可印章;
- d) GB 150.1 适用范围内的压力容器,设计单位应在容器设计使用年限内保存全部容器设计 文件。

4.2.2.3 制造单位的职责:

- a) 制造单位应按照设计文件要求进行制造,如需对原设计进行修改,应当取得原设计单位 同意修改的书面文件,并且对改动部位作出详细记载;
- b) 制造单位在容器制造前应制定完善的质量计划,其内容至少应包括容器或元件的制造工艺控制点、检验项目和合格指标;
- c) 制造单位的检查部门在容器制造过程中和完工后,应按本标准、图样和质量计划的规定 对容器进行各项检验和试验,出具相应报告,并对报告的正确性和完整性负责;
- d) 制造单位在检验合格后,出具产品质量合格证;
- e) GB 150.1 适用范围内的容器,每台容器产品应在容器设计使用年限内至少保存下列技术 文件备查:
 - 1) 质量计划:
 - 2) 制造工艺图或制造工艺卡:
 - 3) 产品质量证明文件:
 - 4) 容器的焊接工艺和热处理工艺文件;
 - 5) 标准中允许制造厂选择的检验、试验项目记录;
 - 6) 容器制造过程中及完工后的检查、检验、试验记录和报告;
 - 7) 容器的原设计图和竣工图。
- f) 常压卧式容器制造单位的职责按 NB/T 47003.1 的规定。

4.3 设计一般规定

4.3.1 载荷

设计时应考虑以下载荷以及载荷的组合:

- a) 内压、外压或最大压差:
- b) 液柱静压力, 当液柱静压力小于设计压力的 5%时, 可忽略不计;
- c) 支座的反作用力;

NB/T 47042-2014

- d) 容器自重(包括内件等)以及正常工作条件下或耐压试验状态下内装介质的重力载荷;
- e) 地震载荷:

需要时,还应考虑下列载荷:

- f) 附属设备及隔热材料、衬里、管道、扶梯、平台等重力载荷;
- g) 风载荷、雪载荷;
- h) 连接管道和其他部件的作用力;
- i) 温度梯度或热膨胀量不同引起的作用力;
- i) 冲击载荷包括压力急剧波动的冲击载荷、流体冲击引起的反力等;
- k) 在运输或吊装时的作用力。
- 4.3.2 设计压力和计算压力的确定
- 4.3.2.1 设计压力的取值应不小于工作压力。
- 4.3.2.2 容器装有超压泄放装置时,应按 GB 150.1 中的相应规定确定设计压力。
- 4.3.2.3 对于盛装液化气体的容器,如果具有可靠的保冷设施,在规定的装置系数范围内,设计压力应根据工作条件下容器内介质可能达到的最高温度确定;否则按相关法规确定。
- 4.3.2.4 真空容器的设计压力按承受外压考虑。当装有安全控制装置(如真空泄放阀)时,设计压力取 1.25 倍的最大内外压力差或 0.1MPa 两者中的低值;当无安全控制装置时,取 0.1MPa。
- 4.3.2.5 由 2 个或 2 个以上压力室组成的容器,应分别确定各压力室的设计压力。确定共用元件的计算压力时,应考虑相邻室之间的最大压力差。
- 4.3.2.6 对于承受外压载荷的容器元件,确定计算压力时应考虑在正常工作情况下可能出现的最大内外压力差。
- 4.3.3 设计温度的确定
- 4.3.3.1 设计温度不得低于元件金属在工作状态可能达到的最高温度。对于 0℃以下的金属温度,设计温度不应高于元件金属可能达到的最低温度。
- 4.3.3.2 当容器各部分在工作状态下的金属温度不同时,可分别设定每部分的设计温度。
- 4.3.3.3 元件的金属温度通过以下方法确定:
 - a) 可用传热计算求得:
 - b) 在已使用的同类容器上测定;
 - c) 根据容器内部介质温度并结合外部条件确定。
- 4.3.3.4 在确定最低设计金属温度时,应当充分考虑在运行过程中,大气环境低温条件对容器壳体金属温度的影响。大气环境低温条件系指历年来月平均最低气温(指当月各天的最低气温值之和除以当月天数)的最低值。
- 4.3.3.5 对有不同工况的容器,应按最苛刻的工况设计,必要时还需考虑不同工况的组合,并在图样或相应技术文件中注明各工况的操作条件和设计条件下的压力和温度值。
- 4.3.4 厚度附加量

厚度附加量按式(1)确定:

 $C = C_1 + C_2 \qquad \dots$

式中:

C----厚度附加量, mm;

 C_1 ——材料厚度负偏差, mm;

 C_2 ——腐蚀裕量, mm。

4.3.4.1 材料厚度负偏差

板材或管材的厚度负偏差按相应材料标准规定。

4.3.4.2 腐蚀裕量

为防止容器元件由于腐蚀、机械磨损而导致厚度削弱减薄,应考虑腐蚀裕量。具体规定如下:

- a) 对有均匀腐蚀或磨损的元件,应根据预期的容器设计使用年限和介质对金属材料的腐蚀 速率(及磨损速率)确定腐蚀裕量;
- b) 容器各元件受到的腐蚀程度不同时,可采用不同的腐蚀裕量;
- c) 介质为压缩空气、水蒸气或水的碳素钢或低合金钢制容器,腐蚀裕量不小于 1mm。
- 4.3.5 壳体加工成形后不包括腐蚀裕量的最小厚度:
 - a) 碳素钢、低合金钢制容器,不小于 3mm;
 - b) 高合金钢制容器,一般应不小于 2mm;
 - c) 其他金属制容器按相应标准的规定。
- 4.3.6 容器元件的名义厚度和最小成形厚度一般应标注在设计图样上。
- 4.4 许用应力
- 4.4.1 压力容器的受压元件和螺栓材料在不同温度下的许用应力按 GB 150.2 和相应引用标准规定选取。常压卧式容器材料的许用应力按 NB/T 47003.1 确定。
- 4.4.2 设计温度低于 20℃时, 取 20℃时的许用应力。
- 4.4.3 复合钢板的许用应力应按 GB 150.1 相应规定确定。
- 4. 4. 4 对于地震载荷或风载荷与 4.3.1 中其他外载荷相组合时,允许元件的设计应力不超过许用应力的 1.2 倍。
- 4.4.5 圆筒许用轴向压缩应力应按 GB 150.1 相应规定确定。
- 4.4.6 非受压元件材料的许用应力
- 4.4.6.1 鞍式支座按 5.4.2 选取。
- 4.4.6.2 焊于受压壳体上的重要内件、加强圈等元件按相近材料的受压元件选取。
- 4.5 焊接接头系数
- 4.5.1 焊接接头系数 φ 应根据对接接头的焊缝形式及无损检测的长度比例确定。
- 4.5.2 钢制压力容器的焊接接头系数应按 GB 150.1 的规定。
- 4.5.3 钢制常压容器的焊接接头系数应按 NB/T 47003.1 的规定。
- 4.5.4 其他金属材料的焊接接头系数按相应引用标准的规定。
- 4.6 耐压试验
- 4.6.1 通用要求
- 4.6.1.1 容器制成后应经耐压试验,耐压试验包括:液压试验、气压试验或气液组合试验。试验的种类、要求和试验压力值应在图样上注明。
- 4.6.1.2 压力容器的耐压试验:
 - a) 压力容器的耐压试验一般采用液压试验,液压试验应满足 GB 150 或相关引用标准的要求;
 - b) 对于不适宜进行液压试验的压力容器,可采用气压试验或气液组合压力试验。进行气压试验或气液组合试验的容器应满足 GB 150 的相关要求;

NB/T 47042-2014

- c) 外压容器以内压进行耐压试验。
- 4.6.1.3 常压卧式容器的耐压试验

常压卧式容器耐压试验的具体要求应符合NB/T 47003.1的相应规定。

- 4.6.2 耐压试验压力
- 4. 6. 2. 1 压力容器的耐压试验压力的最低值按 GB 150.1 的规定。工作条件下内装介质的液柱静压力大于液压试验的液柱静压力时,应适当考虑相应增加试验压力。
- 4. 6. 2. 2 常压卧式容器耐压试验压力应按 NB/T 47003.1 的规定。
- 4.6.2.3 耐压试验应力校核按 GB 150.1 或 NB/T 47003.1 的规定。
- 4.6.3 耐压试验的免除

对不能按上述规定进行耐压试验的压力容器,设计文件应提出确保容器安全运行的前提下免除 耐压试验所应采取的安全措施,经设计单位技术负责人批准后在图样上注明。

- 4.7 泄漏试验
- 4.7.1 泄漏试验包括气密性试验以及氨检漏试验、卤素检漏试验和氦检漏试验等。
- 4.7.2 盛装介质毒性程度为极度、高度危害或设计上不允许有微量泄漏的容器,应在耐压试验合格后进行泄漏试验。

注:介质毒性程度按《固定式压力容器安全技术监察规程》的规定确定。

- 4.7.3 设计单位应当提出容器泄漏试验的方法和技术要求。
- 4.7.4 需进行泄漏试验时,试验压力、试验介质和相应的检验要求应在图样上和设计文件中注明。
- 4.7.5 气密性试验压力等于设计压力。
- 4.8 焊接接头结构设计要求
- 4.8.1 对于钢制压力容器,焊接接头的结构设计参照 GB 150.3 的要求。
- 4.8.2 对于常压卧式容器和其他金属制容器,焊接接头的结构设计参照引用标准的要求。
- 4.9 超压泄放装置

容器在操作过程中有可能出现超压时, 应按照GB 150.1的要求设置超压泄放装置。

- 5 材料
- 5.1 钢制卧式压力容器受压元件用材料的选用原则、标准、热处理状态及许用应力值等均应符合 GB 150.2 的规定。其他金属制卧式压力容器材料的选用按本标准相应引用标准的规定。
- 5.2 常压卧式容器壳体元件用钢的选用原则、钢材标准、热处理状态及许用应力值等均应符合 NB/T 47003.1 的规定。
- 5.3 非受压元件用材料应是已列入国家标准的材料。当作为焊件时,应采用焊接性能良好且不会导致被焊件性能降低的材料。对焊接在受压壳体上的重要内件、加强圈等非受压元件用板、管、锻件材料应符合 5.1 的规定。
- 5.4 鞍座材料
- 5.4.1 选材原则:
 - a) 选择鞍座材料时应考虑容器的设计温度(尤其是低温工况)和环境温度以及经济合理性等:
 - b) 鞍座的设计温度应根据容器的设计温度和环境温度综合考虑确定:
 - c) 与圆筒相焊接的鞍座垫板应与圆筒材料相匹配。

5.4.2 许用应力确定:

- a) 通常情况下,碳素钢和低合金钢鞍座材料许用应力的最小安全系数为: n_s=1.5;
- b) 鞍座常用材料的许用应力按照表 1 确定。

材 料		许用应力[σ] _{sa} / MPa
Q235A、Q235B	≥-10 ~ 100	160
Q235A、Q235B	> 100 ~ 200	120
02454 02450	≥-20 ~ 100	200
Q345A、Q345B	> 100 ~ 200	170
0246P	≥-40 ~ 100	200
Q345R	100 ~ 200	170

表 1 鞍座常用材料的许用应力

5. 5 地脚螺栓宜选用符合 GB/T 700 规定的 Q235 或符合 GB/T 1591 规定的 Q345。Q235 的许用应力[σ] $_{bt}$ =147MPa; Q345 的许用应力[σ] $_{bt}$ =170MPa。如采用其他碳素钢,则 n_s \geqslant 1.6;如采用其他低合金钢,则 n_s \geqslant 2.0。

6 结构

6.1 支座

6.1.1 支座的型式

卧式容器采用鞍式支座(见图1)。当支座焊接在容器上时,其中的一个支座应可在基础上滑动或滚动。

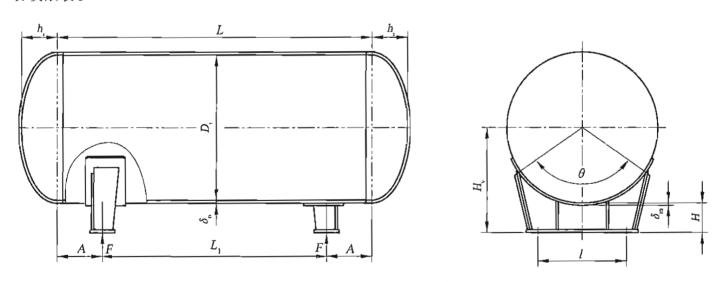


图 1 鞍式支座支承的卧式容器

6.1.2 支座的设置

支座中心到封头切线的距离A尽量小于或等于0.5Ra, 且不宜大于0.2L。

6.1.3 鞍式支座的选取与设计

鞍式支座宜按JB/T 4712.1选取,在满足JB/T 4712.1所规定的条件下,可免除对鞍式支座的强度 校核;否则,应按第7章进行强度校核。

6.1.4 鞍座的设置:

NB/T 47042-2014

- a) 鞍座设置时应考虑容器整体受力情况,并综合考虑简体的长度、直径、壁厚等因素;
- b) 当简体的长度L过长时,可考虑采用3个或3个以上鞍座支承的结构;
- c) 当采用3个鞍座支承时,应中间鞍座固定,两端鞍座可以滑动或滚动。

6.2 开孔及接管

- 6.2.1 卧式容器除设置必需的工艺管口外,还应根据需要设置人孔、手孔或检查孔。
- 6.2.2 当简体的长度 L 超过 8m 时, 人孔数量不宜少于 2 个。
- 6.2.3 容器排净口宜在底部最低点设置。不能在简体底部设排净口时,可设置插底管,其结构见图 2。插底管端部最小排液间隙 B₁ 应能保证足够的排净空间。

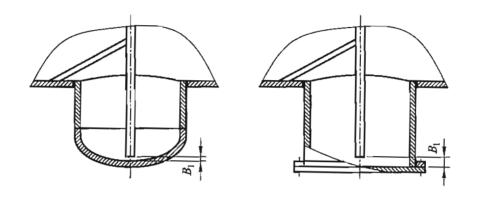


图 2 插底管排液口结构

6.3 加强圈的设置

- 6.3.1 容器的加强圈应是整圈或相当于整圈的结构,加强圈与壳体的连接结构应符合 GB 150.3 的 有关规定。
- 6.3.2 考虑卧式容器支座处局部应力影响时,可在鞍座平面上或靠近支座平面处设置内、外加强 圈。
- 6.3.3 考虑卧式容器外压失稳时,外压加强圈的设置及计算应符合 GB 150.3 的相应规定。

7 强度计算

- 7.1 本章计算适用于承受均布载荷且对称布置的双鞍座支承的卧式容器。
- 7.2 压力容器受压元件应按 GB 150.3 的有关规定进行强度计算,按本章进行强度及稳定性校核。
- 7.3 常压卧式容器元件应按 NB/T 47003.1 的有关规定进行强度计算,按本章进行强度及稳定性校核。
- 7.4 压力容器上的所有开孔及其补强计算均应符合 GB 150.3 的相应规定。
- 7.5 常压卧式容器上的所有开孔及其补强计算均应符合 NB/T 47003.1 的相应规定。

7.6 符号说明

 $A \longrightarrow$ 鞍座中心线至封头切线的距离(见图1), mm;

注1:一个鞍座底板上只有两个地脚螺栓孔时,鞍座中心线即地脚螺栓孔的中心线;一个鞍座底板上有4个地脚螺栓孔时,鞍座中心线为沿筒体轴线方向的两个螺栓孔间距的中心线。

 $A_0 \longrightarrow -$ 个支座的所有加强圈与圆筒起加强作用有效段的组合截面积之和, mm²;

B — 设计温度下, 按GB 150.3确定的外压应力系数, MPa:

 B^0 — 常温下,按GB 150.3确定的外压应力系数, MPa;

 D_{i} _____ 圆筒内直径, mm;

```
D_{\circ} —— 圆筒外直径, mm;
F—— 每个支座的反力, N;
I<sub>0</sub> —— 一个支座的所有加强圈与圆筒起加强作用的有效段的组合截面对该截面形心轴X-X的
     惯性矩之和(见图8、图9), mm4;
K_0 —— 载荷组合系数, K_0=1.2;
K_1 \sim K_9 — 系数, 查表2、表4~6、表8;
L \longrightarrow 封头切线间距离(见图1), mm;
M_1 — 圆筒中间处的轴向弯矩, N \cdot mm;
M_2 — 支座处圆筒的轴向弯矩, N·mm;
R_a — 圆筒的平均半径, R_a=R_i+\delta_n/2, mm;
R_h — 碟形封头球面部分内半径, mm;
R_i —— 圆筒内半径, mm;
b — 支座的轴向宽度(见图10), mm;
b<sub>1</sub> — 加强圈的宽度(见图8、图9), mm;
b_2—— 圆筒的有效宽度,取b_2=b+1.56\sqrt{R_a\delta_n}, mm;
b_3 — 计算圆筒与加强圈形成组合截面时,圆筒的有效宽度,b_3 = b_1 + 1.56 \sqrt{R_s \delta_s} , mm;
b<sub>4</sub> — 支座垫板宽度(见图10), mm;
g — 重力加速度, 取g=9.81m/s<sup>2</sup>;
h_i — 封头曲面深度, mm;
k \longrightarrow  系数。当容器不焊在支座上时,取k=1; 当容器焊在支座上时,取k=0.1;
m--- 容器质量(包括容器自身质量、充满水或充满介质的质量、所有附件质量及隔热层等质量),
    容器空质量(包括容器自身质量、所有附件质量及隔热层等质量). kg:
p — 设计压力, MPa;
p<sub>c</sub> — 计算压力, MPa;
   — 单位长度载荷,N/mm;
   - 碟形封头过渡段转角内半径,mm;
\delta_{s} — 圆筒有效厚度, mm;
\delta_{he} — 對头有效厚度, mm;
\delta_n —— 圆筒名义厚度, mm;
\delta_{hr} — 封头名义厚度, mm;
\delta_{cc} — 鞍座垫板有效厚度, mm;
\delta_{\rm m} — 鞍座垫板名义厚度, 一般取 \delta_{\rm m} = \delta_{\rm n}, mm;
\theta—— 鞍座包角, (°);
```

 $[\sigma]_{ac}^{\iota}$ — 设计温度下容器圆筒材料的轴向许用压缩应力, $[\sigma]_{ac}^{\iota} = \min\{[\sigma]^{\iota}, B\}$, MPa;

 $[\sigma]_{ac}$ — 常温下容器圆筒材料的轴向许用压缩应力,取 $[\sigma]_{ac}$ = $\min\{0.9R_{eL},R_{p0.2},B^0\}$,MPa;

[σ]¹—— 设计温度下容器壳体材料的许用应力, MPa;

 $[\sigma]^{!}$ — 设计温度下加强圈材料的许用应力,MPa;

 $[\sigma]_{sa}$ — 鞍座材料的许用应力, MPa;

83

NB/T 47042-2014

 $[\sigma]_{h}$ — 地脚螺栓材料的许用应力, MPa;

 σ_1 , σ_2 —— 圆筒中间处横截面内最高、最低点处的轴向应力, MPa;

 σ_3 , σ_4 —— 支座处圆筒横截面内最高、最低点处的轴向应力, MPa;

注2: $\sigma_{T1} \sim \sigma_{T4}$ 表示水压试验工况时的圆筒轴向应力。

 σ_s —— 支座处圆筒横截面最低点的周向应力(见图7), MPa;

 σ_6 — 无加强圈时鞍座边缘处的圆筒周向应力(见图7),MPa;

 σ_6' — 无加强圈时鞍座垫板边缘处的圆筒周向应力(见图7), MPa;

σ₁—— 加强圈与圆筒组合截面上圆筒表面的最大周向应力(见图7), MPa;

σ₈ — 加强圈与圆筒组合截面上加强圈边缘处的最大周向应力(见图7), MPa;

 σ_{o} — 鞍座腹板水平方向上的平均拉应力, MPa;

 σ_{ca} — 由水平地震力引起的支座腹板与筋板组合截面的压应力, MPa;

 σ_{sa}^{t} — 由温度变化引起的支座腹板与筋板组合截面的压应力,MPa;

τ — 圆筒切向剪应力, MPa;

τ, — 封头应力, MPa;

 ρ — 加强圈靠近鞍座平面时, σ_7 和 σ_8 的方位角 [见图 7 c)], (°);

 Δ —— 圆筒未被加强时, σ_3 的方位角 [见图 4 b)], (°);

 α — 圆筒剪应力的方位角 [见图5 b)], (°)。

- 7.7 卧式容器的强度计算
- 7.7.1 支座反力按式(2)计算:

$$F = \frac{mg}{2} \tag{2}$$

- 7.7.2 圆筒轴向应力及校核
- 7.7.2.1 圆筒轴向弯矩计算

圆筒轴向最大弯矩位于圆筒中间截面或鞍座平面内(见图3)。

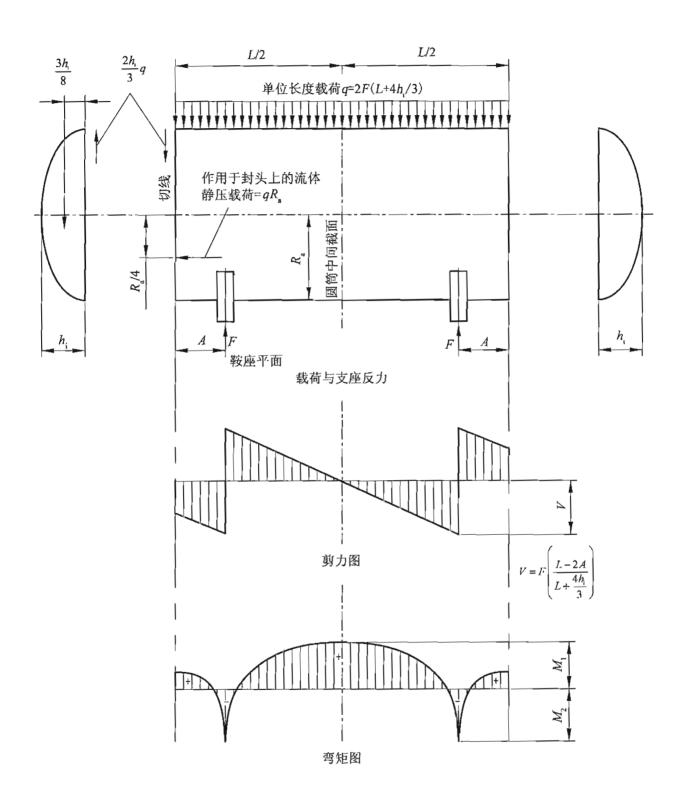


图 3 卧式容器载荷、支座反力、剪力及弯矩图

圆筒中间横截面内的轴向弯矩,按式(3)计算:

$$M_{1} = \frac{FL}{4} \left[\frac{1 + \frac{2(R_{a}^{2} - h_{i}^{2})}{L^{2}}}{1 + \frac{4h_{i}}{3L}} - \frac{4A}{L} \right]$$
 (3)

鞍座平面内的轴向弯矩,按式(4)计算:

$$M_{2} = -FA \left[1 - \frac{1 - \frac{A}{L} + \frac{R_{a}^{2} - h_{i}^{2}}{2AL}}{1 + \frac{4h_{i}}{3L}} \right]$$
 (4)

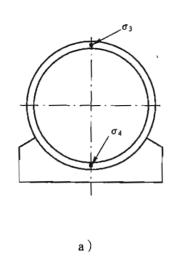
- 7.7.2.2 圆筒轴向应力计算
- 7.7.2.2.1 圆筒中间横截面上,由压力及轴向弯矩引起的轴向应力,按式(5)、式(6)计算: 最高点处:

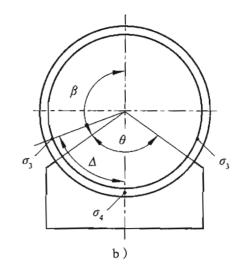
$$\sigma_1 = \frac{p_c R_a}{2\delta_c} - \frac{M_1}{3.14R_a^2 \delta_c} \qquad \dots$$

最低点处:

$$\sigma_2 = \frac{p_c R_a}{2\delta_c} + \frac{M_1}{3.14R_a^2 \delta_c} \qquad \dots$$

- 7.7.2.2.2 鞍座平面上,由压力及轴向弯矩引起的轴向应力,按式(7)、式(8)计算:
 - a) 当圆筒在鞍座平面上或靠近鞍座处有加强圈或被封头加强(即 $A \leq R_a/2$)时,轴向应力 σ_3 位于横截面最高点处 [见图 4 a)];当圆筒未被加强时, σ_3 位于靠近水平中心线处 [见图 4 b)];


$$\sigma_3 = \frac{p_c R_a}{2\delta_c} - \frac{M_2}{3.14K_1 R_a^2 \delta_c} \qquad \dots$$
 (7)


b) 在横截面最低点处的轴向应力 σ_a :

式中系数 K_1 、 K_2 值由表2查得。

表 2 系数 K_1 、 K_2

条件	鞍座包角 θ / (°)	K_1	K ₂
	120	1.0	1.0
$A \leq R_a/2$,或在鞍座平面上有加强圈的圆筒	135		1.0
	150		1.0
	120	0.107	0.192
$A > R_a/2$,且在鞍座平面上无加强圈的圆筒	135	0.132	0.234
	150	0.161	0.279

注: $\beta = 180^{\circ} - \theta/2$, $\Delta = \theta/2 + \beta/6$ 。

图 4 鞍座平面圆筒轴向应力位置

7.7.2.2.3 按式(2)-(8)分别计算操作工况轴向应力 $\sigma_1 \sim \sigma_4$ 和水压试验工况时轴向应力 $\sigma_{\tau_1} \sim \sigma_{\tau_4}$ 。

7.7.2.3 圆筒轴向应力的校核

圆筒轴向应力应满足表 3 的要求。

工况 最大应力校核条件 内压设计 外压设计 加压 未加压 拉应力: $\max\{\sigma_1, \sigma_2, \sigma_3, \sigma_4\} \leq \phi[\sigma]^t$ 操作工况 (盛装物料) 未加压 压应力: $|\min\{\sigma_1, \sigma_2, \sigma_3, \sigma_4\}| \leq [\sigma]_{ac}^t$ 加压 拉应力: $\max\{\sigma_{\text{TI}}, \sigma_{\text{T2}}, \sigma_{\text{T3}}, \sigma_{\text{T4}}\} \leq 0.9 \phi R_{\text{eL}}(R_{\text{p0},2})$ 加压 水压试验工况 (充满水) 未加压 压应力: $|\min\{\sigma_{T1}, \sigma_{T2}, \sigma_{T3}, \sigma_{T4}\}| \leq [\sigma]_{ac}$

表 3 圆筒轴向应力的校核条件

7.7.3 圆筒切向剪应力及封头应力计算校核

7.7.3.1 圆筒切向剪应力计算

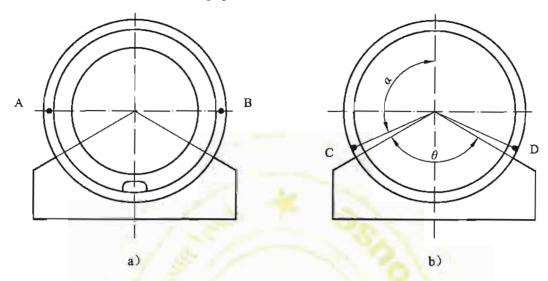
在圆筒支座横截面上的剪应力,按式(9)和式(10)计算。

7.7.3.1.1 圆筒未被封头加强(即 A > R_a/2)时:

当圆筒在鞍座平面内有加强圈时 [见图7b)],其最大剪应力τ位于截面的水平中心线处A、B点 [见图5a)];当在鞍座平面上无加强圈 [见图7a)]或靠近鞍座截面有加强圈 [见图7c)]时,其最大剪应力τ位于靠近鞍座边角处C、D点 [见图5b)]。

$$\tau = \frac{K_3 F}{R_a \delta_e} \left(\frac{L - 2A}{L + \frac{4}{3} h_i} \right) \tag{9}$$

7.7.3.1.2 圆筒被封头加强(即 A≤R_a/2)时:


最大剪应力τ位于圆筒上靠近鞍座边角处 C、D点[见图 5 b)]。

$$\tau = \frac{K_3 F}{R_a \delta_a} \tag{10}$$

式中系数K3值由表 4 查得。

7.7.3.2 圆筒切向剪应力校核

圆筒的切向剪应力应满足: $\tau \leq 0.8[\sigma]$ '。

注: $\alpha = 171^{\circ} - \frac{19}{40}\theta$ 。

图 5 圆筒切向剪应力位置

7.7.3.3 封头应力计算

圆筒被封头加强(即 $A \leq R_a/2$)时,封头的最大应力 τ_n 按式(11)计算:

$$\tau_{\rm h} = \frac{K_4 F}{R_a \delta_{\rm he}} \tag{11}$$

式中系数K4值由表4查得。

表 4 系数 K1、K4

	条件	鞍座包角 θ/(°)	K_3	K_4
	() 3 / Nesson	120	0.319	-
圆筒在	鞍座平面上有加强圈	135	0.319	_
	13 31	150	0.319	_
	No.	120	1.171	
	$A > R_a/2$,或靠近鞍座处有加强圈 $A \le R_a/2$,圆筒被封头加强	135	0.958	
圆筒在鞍座平面上		150	0.799	_
无加强圈		120	0.880	0.401
		135	0.654	0.344
		150	0.485	0.295

7.7.3.4 封头应力的校核

封头的应力,应满足式(12)的要求:

$$\tau_{\rm h} \leq 1.25 [\sigma]^{\rm l} - \sigma_{\rm h} \tag{12}$$

式中:

 σ_h — 由内压在封头中引起的应力。按式(13)~(15)计算。

a) 椭圆封头:

$$\sigma_{\rm h} = \frac{Kp_{\rm c}D_{\rm i}}{2\delta_{\rm he}} \qquad \dots$$

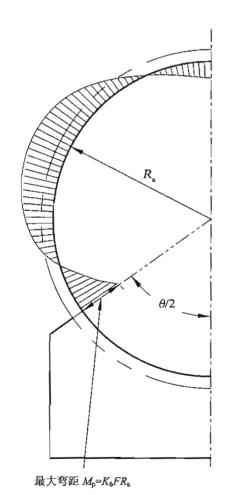
式中:

$$K$$
—— 椭圆形封头形状系数, $K = \frac{1}{6} \left[2 + \left(\frac{D_i}{2h_i} \right)^2 \right]$ 。

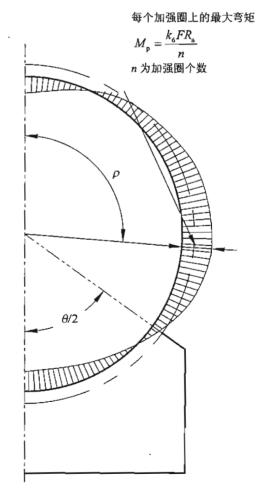
b) 碟形封头:

$$\sigma_{\rm h} = \frac{Mp_{\rm c}R_{\rm h}}{2\delta_{\rm he}} \tag{14}$$

式中:


$$M$$
——碟形封头形状系数, $M = \frac{1}{4} \left(3 + \sqrt{\frac{R_i}{r}} \right)$ 。

c) 半球形封头:


$$\sigma_{\rm h} = \frac{p_{\rm c} D_{\rm i}}{4 \delta_{\rm he}}$$
 (15)

7.7.4 圆筒周向应力计算及校核

鞍座平面上的圆筒周向弯矩见图6。当无加强圈或加强圈在鞍座平面内时,其最大弯矩点在鞍座边角处[见图6 a)]。当加强圈靠近鞍座平面时,其最大弯矩点在靠近横截面水平中心线处[见图6 b)]。

a) 无加强圈或加强圈位于鞍座平面内时

b) 加强圈靠近鞍座平面时

图 6 周向弯矩图

7.7.4.1 无加强圈圆筒

- 7.7.4.1.1 无垫板或垫板不起加强作用时,其周向应力 [见图 7a)]按式(16)~(18)计算:
 - a) 横截面的最低点处:

$$\sigma_{\rm S} = -\frac{kK_{\rm S}F}{\delta_{\rm e}b_{\rm 2}} \qquad (16)$$

b) 鞍座边角处:

$$\sigma_6 = -\frac{F}{4\delta_e b_2} - \frac{3K_6 F}{2\delta_e^2} \qquad \dots$$
 (17)

132

135 147

150

162

$$\sigma_6 = -\frac{F}{4\delta_e b_2} - \frac{12K_6 F R_a}{L\delta_e^2} \qquad \dots$$
 (18)

 $A/R_a \ge 1$

0.053

0.043

0.041

0.034

0.032

0.025

式中系数 K_5 、 K_6 值由表5查得。

注:垫板起加强作用,应同时满足: $\delta_{\rm m} \ge 0.6\,\delta_{\rm n}$; $b_4 \ge b_2$; 垫板包角应不小于(θ +12°)。一般情况下取 $\delta_{\rm m} = \delta_{\rm n}$ 。

0.011

0.010

0.008

0.008

0.006

鞍座包角 θ / (°)	v	K_6		
教座也用ひんう	A 5	$A/R_a \leq 0.5$		
120	0.760	0.013		

0.720

0.711

0.680

0.673

0.650

表 5 系数 K₅、K₆

注: 当 $0.5 < A/R_a < 1$ 时, K_6 值按表内数值线性内插求取。

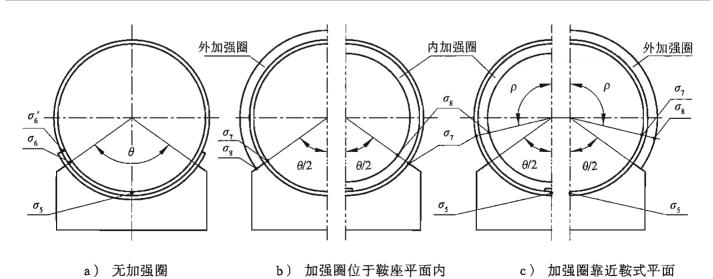


图 7 圆筒周向应力的位置

- 7.7.4.1.2 垫板起加强作用时,其周向应力[见图 7 a)],按式(19)~(23)计算。
 - a) 横截面的最低点处:

$$\sigma_5 = -\frac{kK_5F}{(\delta_0 + \delta_{r_0})b_2} \tag{19}$$

b) 鞍座边角处:

当
$$L/R_a \ge 8$$
 时:
$$\sigma_6 = -\frac{F}{4(\delta_e + \delta_{re})b_2} - \frac{3K_6F}{2(\delta_e^2 + \delta_{re}^2)} \qquad (20)$$

当
$$L/R_a$$
 < 8 时:
$$\sigma_6 = -\frac{F}{4(\delta_e + \delta_{re})b_2} - \frac{12K_6FR_a}{L(\delta_e^2 + \delta_{re}^2)} \qquad \dots$$
 (21)

c) 鞍座垫板边缘处:

当
$$L/R_a \ge 8$$
 时:
$$\sigma_6' = -\frac{F}{4\delta_a b_2} - \frac{3K_6 F}{2\delta_a^2} \qquad \qquad (22)$$

式中系数 K_5 、 K_6 值查表 5 而得,其中式(22)、式(23)应按鞍座垫板包角(θ +12°)查得。 7.7.4.2 有加强圈的圆筒

7.7.4.2.1 当加强圈位于鞍座平面内 [见图 7 b)、图 8], 其周向应力按式 (24) ~式 (25) 计算

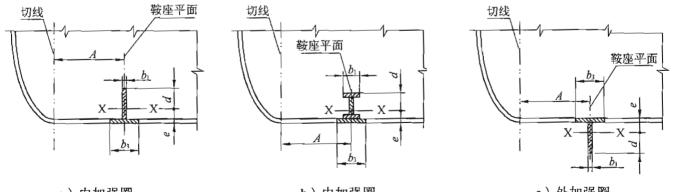
a) 鞍座边角处圆筒周向应力:

$$\sigma_7 = -\frac{K_8 F}{A_0} + \frac{C_4 K_7 F R_a e}{I_0}$$
 (24)

式中:

e ——对内加强圈, 为加强圈与圆筒组合截面形心距圆筒外表面距离 [见图8a)、b)], mm; 对外加强圈、为加强圈与圆筒组合截面形心距圆筒内表面距离「见图8c)],mm。

b) 鞍座边角处加强圈边缘表面周向应力:


$$\sigma_8 = -\frac{K_8 F}{A_0} + \frac{C_5 K_7 F R_a d}{I_0}$$
 (25)

式中:

 $d \longrightarrow$ 对内加强圈,为加强圈与圆筒组合截面形心距加强圈内缘表面之距离[见图8 a)、b)], mm:

对外加强圈, 为加强圈与圆筒组合截面形心距加强圈外缘表面之距离 [见图8 c)],

式中系数 C_4 、 C_5 、 K_7 、 K_8 值由表 6 查取。

a)内加强圈

b) 内加强圈

c)外加强圈

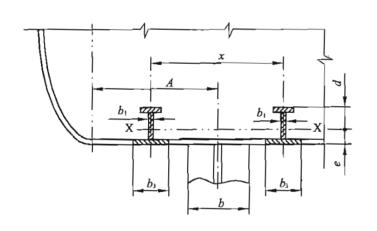

"加强圈位于鞍座平面内"是指加强圈位于图中所示"鞍座平面"两侧各小于或等于 6,/2 的范围内。

图 8 鞍座平面内加强圈

				- ,,,	731,500	4, 03,				
加	强圈位置		位于鞍座平面上[图86)、图9]					靠近鞍座[图 8 c)、图 10]		图 10]
	θ/(°)	120	132	135	147	150	162	120	135	150
	内加强圈	-1	-1	-l	-1	-1	-1	+1	+1	+1
C_4	外加强圈	+1	+1	+1	+1	+1	+1	-1	-1	-1
	内加强圈	+1	+1	+1	+1	+1	+1	-1	-1	-1
C_5	外加强圈	-1	-1	-1	-1	-1	-1	+1	+1	+1
	K ₇	0.053	0.043	0.041	0.034	0.032	0.025	0.058	0.047	0.036
		0.341	0.327	0.323	0.307	0.302	0.283	0.271	0.248	0.219

表 6 系数 C_4 、 C_5 、 K_7 、 K_8

- 7.7.4.2.2 当加强圈靠近鞍座平面内时 [见图 7c)、图 9]:
 - a) 横截面最低点的圆筒周向应力 σς:
 - —— 对无垫板或垫板不起加强作用的,按式(16)计算;
 - —— 对垫板起加强作用的,按式(19)计算。
 - b) 横截面上靠近水平中心线处的圆筒周向应力 σ_7 , 按式(24)计算。
 - c) 横截面上靠近水平中心线处的加强圈边缘表面的周向应力 σ_8 , 按式(25)计算。
 - d) 鞍座边角处圆筒周向应力 σ_6 ,还应按式(17)、式(18)、式(20)、式(21)分别计算。 其中 K_6 值按表5中 A/R_a \leq 0.5查取。

A b₁ b₁ b₁ X

a) 内加强圈

b) 外加强圈

注1: "加强圈靠近鞍座平面"是指加强圈位于图中所示"鞍座平面"两侧各大于 $b_2/2$ 且小于 $R_a/2$ 的范围内。

注2: $b_2(\mathcal{D}b_3) < x \leq R_{ao}$

图 9 靠近鞍座平面的加强圈

e) 周向应力 σ_7 、 σ_8 位置见表 7:

表 7 周向应力 σ_7 、 σ_8 位置鞍座

包角 /(°)	120	135	150
ρ	93°40′	89°32′	84°13′

7.7.4.3 周向应力校核

周向应力应满足下列条件:

$$|\sigma_{5}| \leq [\sigma]^{t}$$

$$|\sigma_{6}| \leq 1.25[\sigma]^{t}$$

$$|\sigma_{6}'| \leq 1.25[\sigma]^{t}$$

$$|\sigma_{7}| \leq 1.25[\sigma]^{t}$$

$$|\sigma_{8}| \leq 1.25[\sigma]^{t}$$

7.8 鞍座设计

鞍式支座及鞍座垫板如图 10 所示。

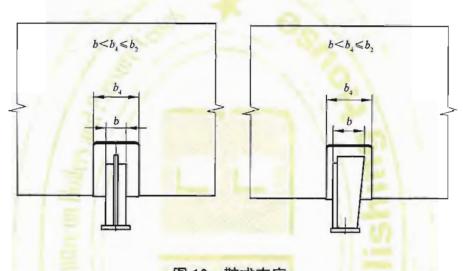


图 10 鞍式支座

鞍座包角一般取 $120^{\circ} \sim 150^{\circ}$ 。钢制鞍座宽度一般取 $b \ge 8\sqrt{R_s}$ 。当采用JB/T 4712的鞍座时,b值应取筋板大端宽度与腹板厚度之和(见图10)。

垫板宽度 b_4 取值: 垫板宽度 b_4 应大于 b_5 ; 垫板不作为加强板时,可取 $b_4 ≤ b_2$; 垫板作为加强板时,还应满足 $b_4 > b_2$ 。

- 7.8.1 腹板水平拉应力及校核
- 7.8.1.1 支座腹板的水平分力Fs按式(26)计算:

$$F_s=K_9F$$
 (26)

式中长。系数值按表8查取。

表 8 系数 K。

鞍座包角θ/(°)	120	135	150
K_9	0.204	0.231	0.259

- 7.8.1.2 鞍座腹板有效截面内的水平方向平均拉应力 σ_{g} , 按式 (27) 或式 (28) 计算。
 - a) 无垫板或垫板不起加强作用时:

$$\sigma_9 = \frac{F_s}{H_s b_0} \qquad \dots \tag{27}$$

b) 垫板起加强作用时:

$$\sigma_9 = \frac{F_s}{H_s b_0 + b_r \delta_{re}} \qquad \dots$$

式中:

 H_s —— 计算高度,取 $\min\left\{H,\frac{1}{3}R_a\right\}$ (见图11), mm;

 b_0 — 鞍座腹板厚度, mm;

 $b_{\rm r}$ — 鞍座垫板有效宽度, 取 $b_{\rm r}=b_2$, mm。

7.8.1.3 应力校核

应力应满足式(29):

$$\sigma_{9} \leq \frac{2}{3} [\sigma]_{sa} \qquad \qquad \dots$$

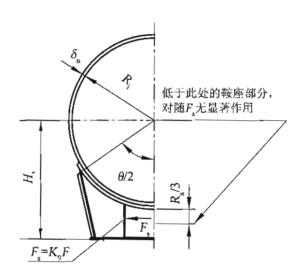


图 11 鞍座应力位置

7.8.2 鞍座压缩应力及校核

- 7.8.2.1 地震载荷引起的,支座腹板与筋板组合截面内产生的压应力按式(30)~(31)计算:
 - a) 水平地震力小于或等于鞍座底板与基础间静摩擦力 ($F_{Ev} \leq mgf$) 时:

$$\sigma_{\rm sa} = -\frac{F}{A_{\rm sa}} - \frac{F_{\rm Ev}H}{2Z_{\rm r}} - \frac{F_{\rm Ev}H_{\rm v}}{A_{\rm sa}(L - 2A)} \qquad (30)$$

b) 水平地震力大于底板与基础的静摩擦力 ($F_{Ev} > mgf$) 时:

$$\sigma_{\rm sa} = -\frac{F}{A_{\rm sa}} - \frac{(F_{\rm Ev} - Ff_{\rm s})H}{Z_{\rm r}} - \frac{F_{\rm Ev}H_{\rm v}}{A_{\rm sa}(L - 2A)} \quad \dots$$
 (31)

式中:

 F_{Ev} — 考虑地震载荷时,作用在容器上的水平地震力, $F_{Ev}=\alpha_l mg$,N;

 α_1 — 水平地震影响系数,按表9选取;

表 9 对应设防地震的水平地震影响系数 α

抗震设防烈度 / 度	7		8		9		
设计基本地震加速度 (对应设防地震)	0.10g	0.15g	0.20g	0.30g	0.40g		
$lpha_{ extsf{I}}$ (对应多遇地震)	0.08	0.12	0.16	0.24	0.32		
注: 如有必要,可按国家规定权限批准的设计地震动参数进行地震载荷计算。							

 H_v — 圆筒中心至基础表面的距离(见图11), mm;

H—— 圆筒最低表面至基础表面的距离,即鞍座高度, mm;

 A_{sa} — 腹板与筋板(筒体或垫板最低处)组合截面积, mm^2 ;

Z_r—— 腹板与筋板 (简体或垫板最低处) 组合截面的抗弯截面系数 , mm³;

f — 鞍座底板与基础间静摩擦系数:

- —— 钢底板对钢基础垫板 f = 0.3;
- —— 钢底板对水泥基础 f=0.4;
- —— 钢底板对特氟隆垫板 f=0.1。

f。—— 鞍座底板对基础垫板的动摩擦系数:

- —— 钢底板对钢基础垫板 fs=0.15;
- —— 钢底板对特氟隆垫板 f_s = 0.05。
- 7.8.2.2 由温度变化引起的支座腹板与筋板组合截面的压应力,按式(32)计算:

$$\sigma_{\rm sa}^{\rm t} = -\frac{F}{A_{\rm sa}} - \frac{FfH}{Z_{\rm r}} \qquad \dots$$
 (32)

式中符号同7.8.2.1。

7.8.2.3 应力校核:

应力应满足式(33):

$$|\sigma_{sa}| \leq K_0[\sigma]_{sa}$$

$$|\sigma_{sa}^t| \leq [\sigma]_{sa}$$

$$(33)$$

- 7.8.3 地震引起的地脚螺栓应力及校核
- 7.8.3.1 倾覆力矩按式(34)计算:

7.8.3.2 由倾覆力矩引起的地脚螺栓拉应力按式(35)计算:

式中:

 $A_{\rm bt}$ — 每个地脚螺栓的横截面面积, mm^2 ;

1 — 简体轴线两侧的螺栓间距, mm

 $n \longrightarrow \mathbb{A}$ 承受倾覆力矩的地脚螺栓个数,个。

7.8.3.3 拉应力校核:

拉应力校核应满足式(36):

$$\sigma_{\rm bt} \leq k_0 \left[\sigma\right]_{\rm bt} \qquad \qquad \dots \tag{36}$$

7.8.3.4 由水平地震力引起的地脚螺栓剪应力

当地震载荷引起的水平地震力大于底板与基础的静摩擦力($F_{Ev} > mgf$)时,由地震力引起的地脚螺栓剪应力按式(37)进行计算:

$$\tau_{\rm bt} = \frac{F_{\rm Ev} - 2Ff_{\rm s}}{n'A_{\rm bt}} \qquad \dots$$

式中:

n'——承受剪应力的地脚螺栓个数(仅计固定端),个。

7.8.3.5 剪应力校核:

剪应力的校核应满足式(38):

$$\tau_{\text{bt}} \leq 0.8 \, k_0 \, [\sigma]_{\text{ht}} \qquad \qquad \dots \tag{38}$$

7.9 卧式容器强度计算表(见表 10)

表 10 卧式容器强度计算表

参数名称	数值	单位	参数名称	数值	单位
		MPa			mm
计算压力 <i>p</i> 。	_	MPa	圆筒平均半径 R。		mm
圆筒材料		1411 4	圆筒名义厚度 δ _α		
					mm
封头材料			圆筒有效厚度 δ_c		mm
鞍座材料			封头名义厚度 δ _{hn}		mm
圆筒材料常温许用应力[σ]		MPa	封头有效厚度 $\delta_{ ext{he}}$		mm
封头材料常温许用应力[σ],		MPa	鞍座垫板名义厚度 δ _m		mm
圆筒材料设计温度下许用应力[o] ^t		MPa	鞍座垫板有效厚度 δ_{re}		mm
封头材料设计温度下许用应力[σ],		MPa	鞍座腹板名义厚度 b。		mm
鞍座材料许用应力[σ] _{sa}		MPa	两封头切线间距离 <i>L</i>		mm
地脚螺栓材料许用应力[σ]μ		MPa	圆筒长度 <i>L</i> 。		mm
圆筒材料常温屈服强度 R _{eL}		MPa	封头曲面深度 h _i		mm
圆筒材料常温弹性模量 <i>E</i>		MPa	鞍座轴向宽度 b		mm
圆筒材料设计温度下弹性模量 E'		MPa	鞍座包角 θ		(°)
圆筒材料密度 ρ _s		kg/mm³	鞍座底板中心至封头切线距离 A		mm
封头材料密度 ρμ		kg/mm³			
操作时物料密度 ρ。		kg/mm³	设计温度		°C
物料充装系数 φ。					MPa
液压试验介质密度 ρτ		kg/mm³			

表 10 (续)

			支座反			
筒体质:	 量(两切线间)m ₁	$m_{\rm l} = \pi(D)$	$(1 + \delta_n)L\delta_n\rho_s$			kg
封头质	量(曲面部分) <i>m</i> ₂	m ₂ =				kg
β	 析件质量 <i>m</i> ₃	<i>m</i> ₃ =				kg
封头容	积(曲面部分)V _H	$V_{\rm H}$ =	mm ³	容器容积 (两切线间)V	$V = \frac{\pi}{4} D_i^2 I$	$L + 2V_{\rm H}$ mm ³
riz rup	容器内充液质量 m4		$\mathbb{E} m_4 = V \rho_0 \phi_0 =$			kg
谷岙闪允浓灰重 m₄		液压试验	$m_4' = V \rho_T =$	100		kg
隔	热层质量 m5	m ₅ =	who The	0.74		kg
	总质量 m		$m=m_1+m_2+m_3+m_4$	m ₄ +m ₅ =	1	kg
	□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	压力试验	$m'=m_1+m_2+m$	$n_3 + m_4' =$	151	kg
支座反力 F		操作时	$F' = \frac{1}{2}mg =$	3 \\ 3	101	N
		压力试验	$\hat{F}'' = \frac{1}{2}m'g =$		9	N
		$F = \max \{$	$\{F', F''\}=$		1	N
		= 11	系数码	确定	40	
	系数确定条件	ă II	$A \leq R_a/2$ 或 $(A >$	$R_a/2$)	$\theta =$	
			查表 2 得: K ₁ =	查表 2 征	导: K₂=	查表 4 得: K ₃ =
	系数		查表 4 得: K4=	查表 5 征	导 : K ₅ =	查表 5 得: K ₆ =
	<i>7</i> , <i>3</i> ,		查表 6 得: K ₇ =	查表 6 征	寻 : K ₈ =	查表 8 得: K ₉ =
		(3)	查表 6 得: C4=	查表 6 征	导: C ₅ =	
		13	圆筒轴向应	力及校核	1/2/	
	圆筒中间	操作工资	$M_{i} = \frac{F'L}{4} \left[\frac{1+2(F-1)}{1+2(F-1)} \right]$	$\left[\frac{R_{x}^{2} - h_{i}^{2}}{4 + \frac{4}{3} \cdot \frac{h_{i}}{L}} - \frac{4A}{L}\right] =$	1	N·mm
轴向	横截面	水压试验工况	$M_{\rm T1} = \frac{F''L}{4} \left[\frac{1+20}{1} \right]$	$M_{T1} = \frac{F''L}{4} \left[\frac{1 + 2(R_a^2 - h_i^2)/L^2}{1 + \frac{4}{3} \cdot \frac{h_i}{L}} - \frac{4A}{L} \right] =$		N·mm
弯 矩	₩ da TV ==	操作工资	$M_2 = -F'A \begin{bmatrix} 1 - \frac{1}{2} \end{bmatrix}$	$\frac{A_{a} + \frac{R_{a}^{2} - h_{i}^{2}}{2AL}}{1 + \frac{4}{3} \cdot \frac{h_{i}}{L}} =$		N-mm
	鞍座平面	水压试验 工况	$M_{T2} = -F''A \begin{bmatrix} 1 \\ 1 \end{bmatrix}$	$\frac{-\frac{A}{L} + \frac{R_{\rm a}^2 - h_{\rm i}^2}{2AL}}{1 + \frac{4}{3} \cdot \frac{h_{\rm i}}{L}} =$		N·mm

表 10 (续)

		_			
		内压	圆筒中间横截面 最高点处	$\sigma_1 = -\frac{M_1}{3.14R_a^2 \delta_e} =$	MPa
	操作工况	未加 压	鞍座平面 最低点处	$\sigma_4 = \frac{M_2}{3.14K_2R_0^2\delta_c} =$	MPa
		内压	圆筒中间横截面 最低点处	$\sigma_2 = \frac{p_c R_a}{2\delta_e} + \frac{M_1}{3.14 R_a^2 \delta_e} =$	MPa
		加压	鞍座平面 最高点处	$\sigma_3 = \frac{p_c R_a}{2\delta_c} - \frac{M_2}{3.14K_1 R_a^2 \delta_c} =$	MPa
	(盛装物料)	外压	圆筒中间横截面 最高点处	$\sigma_{1} = \frac{p_{c}R_{a}}{2\delta_{c}} - \frac{M_{1}}{3.14R_{a}^{2}\delta_{c}} =$	MPa
轴向		加压	鞍座平面 最低点处	$\sigma_4 = \frac{p_c R_a}{2\delta_c} + \frac{M_2}{3.14K_2 R_a^2 \delta_c} =$	МРа
应 力		外压	圆筒中间横截面 最低点处	$\sigma_2 = -\frac{M_1}{3.14R_a^2 \delta_c} =$	MPa
		未加 · 压	鞍座平面 最高点处	$\sigma_3 = -\frac{M_2}{3.14K_1R_2^2\delta_e} =$	MPa
	水压试验工况 (充满水)	未加	圆筒中间横截面 最高点处	$\sigma_{\rm T1} = -\frac{M_{\rm T1}}{3.14R_{\rm a}^2\delta_{\rm c}} =$	MPa
		金工况 压	鞍座平面 最低点处	$\sigma_{\text{T4}} = -\frac{M_{\text{T2}}}{3.14K_2R_2^2\delta_e} =$	MPa
			圆筒中间横截面 最低点处	$\sigma_{\text{T2}} = \frac{p_{\text{T}}R_{\text{a}}}{2\delta_{\text{e}}} + \frac{M_{\text{T1}}}{3.14R_{\text{a}}^{2}\delta_{\text{e}}} =$	MPa
		加压。	鞍座平面 最高点处	$\sigma_{\rm T3} = \frac{p_{\rm T}R_{\rm a}}{2\delta_{\rm c}} - \frac{M_{\rm T2}}{3.14K_{\rm L}R_{\rm a}^2\delta_{\rm a}} =$	MPa
	许用压缩应力	外压应力系数 B 操作工况		$A=0.094 \delta_e / R_o = $ 根据圆筒材料,按 GB 150.3 B_0 值	规定求取 B、
	$[\sigma]_{ac}$			$[\sigma]_{ac}^{t} = \min\{[\sigma]^{t}, B\} =$	MPa
应 力		充满水未加压状态		$[\sigma]_{ac} = \min\{0.9R_{cL}(R_{p0.2}), B^0\} =$	MPa
校	[B. // v2	内压加压(外压未加压)		$\max\{\sigma_1, \ \sigma_2, \ \sigma_3, \ \sigma_4\} \leqslant \phi[\sigma]^{t}$	
核	操作工况	内压未	加压(外压加压)	$\left \min \left\{ \sigma_1, \ \sigma_2, \ \sigma_3, \ \sigma_4 \right\} \right \leq [\sigma]_{ac}^t$	
	水压试验工况		加压	$\max \{\sigma_{\text{T1}}, \sigma_{\text{T2}}, \sigma_{\text{T3}}, \sigma_{\text{T4}},\} \leq 0.9 \phi R_{\text{cL}}(R_{\text{p0.2}})$	
	(充满水)		未加压	$\left \min \left\{ \sigma_{T_{1}}, \sigma_{T_{2}}, \sigma_{T_{3}}, \sigma_{T_{4}} \right\} \right \leq [\sigma]_{ac}$	
			圆筒切向剪应力	1及封头应力及校核	
	圆筒未被封	———— 头加强	777	\	
圆筒切 向剪	$(A > \frac{R_a}{2}]$	时)	$\tau = \frac{K_3 F}{R_a \delta_c} \left(\frac{L - 2A}{L + 4h_i / L} \right)$	$\left(\frac{1}{3}\right) = $	MPa
应力	圆筒被封头 $(A \leq \frac{R_2}{2})$		$\tau = \frac{K_3 F}{R_s \delta_s} =$		MPa
封头 应力	圆筒被封头加强 $(A \leq \frac{R_a}{2} \text{ 时})$		$\tau_{\rm h} = \frac{K_4 F}{R_{\rm a} \delta_{\rm he}} =$		MPa

表 10 (续)

圆筒切		向剪应力		$\tau \leqslant 0.8[\sigma]^{\iota}$						
应力 校 核			椭圆形	$\sigma_{\rm h} = -$	$\frac{Kp_{c}D_{i}}{2\delta_{hc}} =$	MPa	其中 K	$C = \frac{1}{6} \left[2 + \left(\frac{D_i}{2h_i} \right)^2 \right]$		
	封乡	上应力	碟形	$\sigma_{\rm h} = \frac{1}{2}$	$\frac{Mp_{\rm e}R_{\rm h}}{2\delta_{\rm he}}=$	MPa	其中 A	$M = \frac{1}{4} \left[3 + \sqrt{\frac{R_i}{r}} \right]$		
			半球形	半球形 $\sigma_{\rm h} = \frac{p_{\rm c} D_{\rm i}}{4\delta_{\rm hc}} = MP$		MPa				
			$\tau_{\rm h} \leq 1.25 \left[\sigma\right]^{\rm t} - \sigma_{\rm h}$							
				圆筒周	向应力及校核 —————					
	圆筒的	有效宽度	$b_2 = b + 1.5$	$6\sqrt{R_{\rm a}\delta_{\rm n}}$	=				mm	
	鞍座彗	垫板厚度	$\delta_{\rm re}$ =						mm	
	鞍座雪	2板包角			(°) ≥ θ+12°]	段 <i>k</i> =		
	无垫板或	横截面 最低点处	$\sigma_5 = -\frac{kK}{\delta_c}$	$\frac{f_5F}{b_2} =$					MPa	
 	垫板不起 加强作用 $b \le b_4 \le b_2$			当 $L/R_a \geqslant 8$ 时 $\sigma_6 = -\frac{F}{4\delta_c b_2} - \frac{3K_6F}{2\delta_e^2} =$					MPa	
加强		鞍座边角绿		当 L/R_a <8 时 $\sigma_6 = -\frac{F}{4\delta_c b_2} - \frac{12K_6 F R_a}{L\delta_c^2} =$					MPa	
圏圏		横截面 最低点处		$\frac{kK_5F}{(1+\delta_{\rm rc})b_5}$	= 2				MPa	
) lii	型板起加 型板起加	鞍座边角级	当 L/R _a ≥	8时,	$\sigma_6 = -\frac{F}{4(\delta_e + 1)}$	$\frac{\delta_{\rm rc})b_2}{\delta_{\rm rc}} - \frac{1}{2(a)}$	$\frac{3K_6F}{\delta_e^2 + \delta_{re}^2)}$	=	MPa	
	强作用 b ₄ > b ₂		当 L/R _a <		$\sigma_6 = -\frac{F}{4(\delta_c + 1)}$		$\frac{2K_6FR_a}{\delta_c^2 + \delta_{re}^2}$	=	MPa	
	$\delta_{\rm m} \geqslant 0.6 \delta_{\rm n}$	鞍座垫板	当 L/Ra≥	≥8时,		$-\frac{3K_6F}{2\delta_e^2} =$			MPa	
		边缘处		当 L/R _a <	8时,	$\sigma_6' = -\frac{F}{4\delta_e b_2}$	$\frac{12K_6FR_a}{L\delta_c^2}$	=		MPa
		材料								
	加	e=	mn	n, d=			mm			
_	强 圈 参 数	力[] n=	1 n= ^							
有 加		组合截 A ₀ = mm ²					mm ²	加强圈位置参照图	8、图 9	
强		组合截面 I _o = mm ⁴								
圈 圆		设计温度了	[σ] ^t				MPa			
筒	加强圈位于鞍座	位于鞍座 鞍座		ī力 	$\sigma_{\gamma} = \frac{C_4 K_{\gamma} F R_z}{I_0}$	$\frac{e}{A_0} = \frac{K_8 F}{A_0} =$			MPa	
	平面内	平面内	边角处	加强圈边		$\sigma_8 = \frac{C_5 K_7 F R_2}{I_0}$	$\frac{d}{A_0} - \frac{K_8 F}{A_0} =$			MPa

表 10 (续)

					-,	210(实力					
			无垫板	横截面:	最低点	$\sigma_{5} = -\frac{kK_{5}F}{\delta_{e}b_{2}}$	=			MPa	
有	加强圈		或垫板 不起加 鞍座边		ሬ <i>ነ</i> ነ	当 L/R₄≥8		$\sigma_6 = -\frac{F}{4\delta_e b_2} - \frac{F}{4\delta_e b_2}$	$\frac{3K_6F}{2\delta_c^2} =$	MPa	
			强作用	鞍座辺)	用处	当 L/R _a <8	时	$\sigma_6 = -\frac{F}{4\delta_e b_2} - \frac{F}{4\delta_e b_2}$	$\frac{12K_6FR_a}{L\delta_c^2} =$	MPa	
加 强		- 1	#h #5	横截面最低。		$\sigma_5 = -\frac{kK}{(\delta_c + \epsilon)^2}$	$\sigma_{\rm s} = -\frac{kK_{\rm s}F}{(\delta_{\rm e} + \delta_{\rm re})b_{\rm 2}} =$			MPa	
遷 圆	平面		起加强	型板		名 <i>5</i> 15		$\sigma_{\delta} = -\frac{F}{4(\delta_{\rm e} + \delta_{\rm e})}$			MPa
筒			7F/II	教座 边,	m XL	当 L/R _a <8 即	$\sigma_6 = -\frac{F}{4(\delta_c + \delta_c)}$		$\frac{12K_6FR_a}{L(\delta_e + \delta_{re}^2)} =$	MPa	
			靠近 水平	圆筒周		$\sigma_7 = \frac{C_4 K_7 F R_7}{I_0}$	$\frac{e}{A_0}$ $-\frac{K_8}{A_0}$	<u>F</u> =		MPa	
			中心线	加强圈 向应力	月边缘周 $\sigma_8 = \frac{C_5 K_7 FR}{I_0}$		$\frac{K_8F}{A_0} = \frac{K_8F}{A_0} = \frac{K_8F}{A_0}$			MPa	
						la	$ \sigma_5 \leq [$	$\sigma]^{^{t}}$			
应っ	力校核					$ \sigma_6 $, $ \sigma_6 $	$, \sigma_7$	$ \leq 1.25 [\sigma]^{t}$			
						$ \sigma_{s} $	<u> </u>				
					 鞍	<u>····································</u>				_	
		鞍座	窗座实际高度		<i>H</i> =	mm 鞍座		计算高度	$H_{\rm s} = \min\left\{H, \frac{1}{3}R_{\rm a}\right\}$	= mm	
		鞍	逐座腹板厚度		b ₀ =	mm 鞍座		垫板实际宽度	b ₄ =	mm	
结构参	数	圆作	筒有效宽度		$b_2 = b + 1.56\sqrt{R_a \delta_n} =$					mm	
14,72	,,,	鞍層	座垫板有效宽度		$b_r = b_2$	mm	圆筒中心至基础表 面距离		$H_{\rm v}=$	mm	
			板与筋板(小端) 合截面积		$A_{sa}=$	mm^2		与筋板(小端) 截面系数	$Z_{\rm r}$ =	mm³	
						k平拉应力及t					
腹板水	平力	$F_{\rm s}$ =	$K_9F=$							N	
水平拉几	₩ 1 1		$\sigma_9 = \frac{F_s}{H_s b_0} =$ 1强作用					MPa			
714 127	<u></u>	垫框	垫板起加强作用 $\sigma_9 = \frac{F_s}{H_s b_0 + b_r \delta_{re}} =$						MPa		
应力校	核					σ_9 =	$\leq \frac{2}{3}[\sigma]$	sa			
					鞍座」	 玉缩应力及校	 核				
		水	平地震影响	2震影响系数 查表 9 得 α ₁ = 抗震设防烈度							
地震引起的腹板		水站	产地震力		$F_{\text{Ev}} = \alpha_1 mg =$						
与筋板组合应力	合截面	当	旨 $F_{\text{Ev}} \leq mg$ f 时: $\sigma_{\text{sa}} = -\frac{F'}{A_{\text{sa}}} - \frac{F_{\text{Ev}}H}{2Z_{\text{r}}} - \frac{F_{\text{Ev}}H_{\text{v}}}{A_{\text{sa}}(L-2A)} =$ 当 $F_{\text{Ev}} > mg$ f 时: $\sigma_{\text{sa}} = -\frac{F'}{A_{\text{sa}}} - \frac{(F_{\text{Ev}} - Ff_{\text{s}})H}{Z_{\text{r}}} - \frac{F_{\text{Ev}}H_{\text{v}}}{A_{\text{sa}}(L-2A)} =$ 5 板组合截面应力 $\sigma_{\text{sa}}^{\text{l}} = -\frac{F'}{A_{\text{sa}}} - \frac{F'fH}{Z_{\text{r}}} =$						MPa		
		当	$F_{\rm Ev} > mgf$	村:	$\sigma_{\rm sa} = -\frac{1}{2}$	$\sigma_{\rm sa} = -\frac{\overline{F'}}{A_{\rm sa}} - \frac{(F_{\rm Ev} - Ff_{\rm s})H}{Z_{\rm r}} - \frac{\overline{F_{\rm Ev}}H_{\rm v}}{A_{\rm sa}(L - 2A)} =$					
温差引起	温差引起的腹板与筋板组合截面应力					$\frac{F'}{A_{\rm sa}} - \frac{F'fH}{Z_{\rm r}} =$				MPa	
成力粉技				$\sigma_{\rm sa} \leq K_0[\sigma]$							
1.1.71°(X	应力校核 ——					$ \sigma_{ ext{sa}}^{ ext{t}} $	< [σ]58			

表 10 (续)

	地震引起	的地脚螺栓	·应力及校核			
以 医	筒体轴线两侧螺栓间距 <i>I=</i>					
地脚螺栓参数	承受倾覆力矩螺栓个数	n -	承受剪应力螺栓个数	n'=		
倾覆力矩	$M_{\rm Ev}^{0-0} = F_{\rm Ev} H_{\rm v} - m_{\rm o} g \frac{l}{2} =$				N·mm	
地脚螺栓拉应力	$\sigma_{ m bt} = rac{M_{ m Ev}^{ m 0-0}}{n l A_{ m bt}}$					
地脚螺栓剪应力	当 $F_{\text{Ev}} > mgf$ 时: $\tau_{\text{bt}} = \frac{F_{\text{Ev}} - 2Ff_{\text{s}}}{n'A_{\text{bt}}} =$					
	拉应力		$\sigma_{\rm bt} \leq K_0 [\sigma]_{\rm bt}$			
四月仪核	剪应力		$\tau_{\rm bt} \leq K_0 0.8 [\sigma]_{\rm bt}$			

8 制造、检验与验收

- 8.1 卧式压力容器的制造、检验与验收要求应符合 GB 150.4 的规定; 卧式常压容器的制造、检验与验收要求应符合 NB/T 47003.1 的规定。
- 8.2 除图样另有规定外,容器及其相连接的非受压元件的尺寸极限偏差、形状和位置公差应满足表 11 及图 12 的要求。
- 8.3 容器外形尺寸极限偏差、形状和位置公差除了满足本标准的规定外,其他应符合 GB/T 1804 中的 m 级要求。

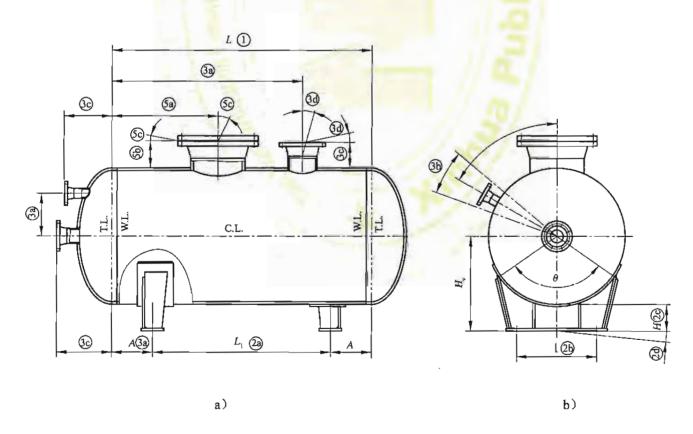
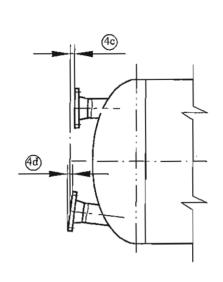
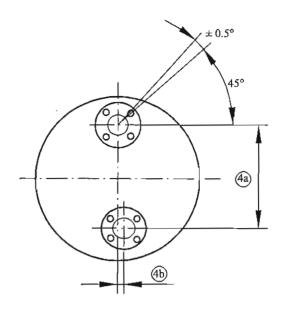




图 12 卧式容器尺寸极限偏差及形状位置公差检验项目

c) 图 12(续)

表 11 卧式容器尺寸极限偏差及形状位置公差

单位为 mm

±			Jan 1713 13.	14 H 14		
检验项目	极限偏差或公差					
	长度 L	≤ 5	> 5 ~ 10	> 10 ~ 20	> 20 ~ 40	> 40
封头切线之间的距离 L	m ve					
		±8	±10	±20	±30	±40
				CD	/T 1004 ch	. 471
		9000		GB	3/1 1804 ¹ 7	m 纵 ±8
a) 两鞍式支座中心线距离 L _l						±10
·			,0			±14
						±16
b)同一一一數座上兩螺孔中心距 /				+2		
c) 鞍座低极与圆筒最低表面距离 H						
d) 鞍座底板沿长度方向水平度	≤0.8/100 底板长					
e) 鞍座底板沿宽度方向水平度	≤0.8/100 底板宽					
a)接管中心线到切线、圆筒中心线的距离,接管	同 2a)					
间距[液面计见4a)、人孔见5]	HJ 2a /					
b)接管及其他附件的方位	±0.5°					
c)接管法兰面与筒体外表面或与切线之间距离	同 2a)					
d) 法兰面水平度或垂直度公差	按 GB 150.4 规定					
a)液面计接管间距	±1.5					
b) 对应两液面计接管中心垂线水平间距	±1.0					
c) 通过液面计两接管法兰中心面垂直线间的距离	±1.0					
d) 液面计法兰面的垂直度	≤0.5/100 法兰外径					
a) 人孔、手孔中心线到切线距离	±13					
b) 人孔、手孔的法兰面与简体外表面距离	±10					
c)人孔、手孔的法兰面水平度或垂直度	≤1/100 法兰外径					
	a) 两鞍式支座中心线距离 L b) 同一鞍座上两螺孔中心距 l c) 鞍座底板与圆筒最低表面距离 H d) 鞍座底板沿长度方向水平度 e) 鞍座底板沿宽度方向水平度 a) 接管中心线到切线、圆筒中心线的距离,接管间距 [液面计见 4 a)、人孔见 5] b) 接管及其他附件的方位 c) 接管法兰面与筒体外表面或与切线之间距离 d) 法兰面水平度或垂直度公差 a) 液面计接管间距 b) 对应两液面计接管中心垂线水平间距 c) 通过液面计两接管法兰中心面垂直线间的距离 d) 液面计法兰面的垂直度 a) 人孔、手孔中心线到切线距离 b) 人孔、手孔的法兰面与筒体外表面距离	大度 L m WR 偏差 (編差 4000 > 4000 > 8000 > 8000 > 12000 > 30000 > 40	大度 L m 松阪	大度 L m	封头切线之间的距离 L 长度 L m	大度 L m

附 录 A (规范性附录) 符合性声明

- A.1 本标准中卧式压力容器部分的制定遵循了国家颁布的压力容器安全法规所规定的基本安全要求,其设计准则、材料要求、制造检验技术要求和验收标准均符合《固定式压力容器安全技术监察规程》和 GB 150.1~150.4《压力容器》的相应规定。本标准为协调标准,即按本标准要求建造的卧式压力容器可以满足《固定式压力容器安全技术监察规程》和 GB 150.1~150.4《压力容器》的基本安全要求。卧式常压容器的建造要求与 NB/T 47003.1《钢制焊接常压容器》相协调。
- A. 2 本标准的修订采用提案审查制度。任何单位和个人均有权利对本标准的修订提出建议,修订建议应采用"表 A.1 标准提案/问询表"的方式提交全国锅炉压力容器标准化技术委员会(以下简称"委员会")。委员会对收到的标准修订提案进行审查,根据审查结果,将采纳的技术内容纳入下一版标准。

总第 묵 表 A.1 标准提案/问询表 □标 准 提 案 □标 准 问 询 标准名称 姓 单 位 名 邮政编码 联系地址 电话/传真 电子信箱 标准条款 提案/问询内容(可另附页) 技术依据与相关资料(可另附页) 附加说明: 单位图章或提案(问询)人签字: 提交日期: 年 月 \Box

全国锅炉压力容器标准化技术委员会

地址:北京市朝阳区和平街西苑 2 号楼 D 座三层 邮政编码: 100013

电子邮箱: chenzh1969@163.com

附录B

(资料性附录)

附加载荷作用时对称双鞍座卧式容器强度及稳定性校核计算

B. 1 范围

- **B**. 1. 1 本附录规定了带附属设备的对称双鞍座支撑卧式容器的强度及稳定性校核计算方法。本附录的计算方法适用于总高不大于 10m 的带附属设备的容器。
- B. 1. 2 附属设备(精馏塔、除氧头和搅拌设备)的轴线应与容器简体轴线正交且与地面垂直;与容器连接的附属设备在容器简体上的开孔直径与简体直径之比不大于 0.5 (见图 B.2)。
- B. 2 本附录的计算方法所考虑的载荷包括由附属设备的重力及地震载荷。

B. 3 符号

- $A_{\rm bt}$ 一个地脚螺栓的横截面面积, mm^2 ;
- F_{Ea} 水平地震作用产生的垂直于附属设备轴线的力, N;
- F₁、F₁ 由均布载荷、附属设备重力和地震载荷在支承处引起的支座反力,分别取操作或 水压试验状态的值,N:
- H —— 鞍座的高度,即鞍座底板下表面至圆筒体外表面的距离, mm,
- H_{v} 鞍座底板下表面至卧式容器中心的高度, mm,
- K_0 载荷组合系数,无地震载荷作用时 K_0 =1.0,有地震载荷作用时 K_0 =1.2;
- K_{10} 、 K_{11} 计算简体截面A-A处轴向应力的系数,查图B.2b);
- M_q^{A-A} 由均布载荷作用,在筒体截面A-A处产生的最大轴向弯矩, $N\cdot mm$;
- $M_{\rm w}^{\rm A-A}$ 由附属设备重力作用,在简体截面A-A处产生的最大轴向弯矩,N·mm;
- $M_{\rm Ea}^{0-0}$ 附属设备由地震作用,相对于0-0截面引起的倾覆力矩, $N\cdot mm$;
- M_{Su}^{0-0} 卧式容器由地震作用,相对于0-0截面引起的倾覆力矩,N·mm;
- M_{Fa}^{1-1} 附属设备由地震作用,相对于1-1截面引起的简体轴向弯矩,N·mm;
- $M_{\text{max}}^{\text{A-A}}$ 由均布载荷和附属设备重力作用,在筒体截面A—A处产生的最大组合轴向弯矩, $N \cdot \text{mm}$;
- $M_{\text{Emax}}^{\text{A-A}}$ —— 考虑地震影响时,由均布载荷、附属设备重力和地震作用,在简体截面A—A处产生的最大组合轴向弯矩,N·mm;
- $a \longrightarrow$ 集中载荷作用截面与支承 I 之间的距离, mm;
- b 集中载荷作用截面与支承Ⅱ之间的距离, mm:
- $h \longrightarrow$ 附属设备地震力作用中心到圆筒体外表面的距离,见图B.1;
- 1 两鞍座中心线之间的距离, mm;
- 1, 鞍座轴线两侧的螺栓间距, mm;
- m_a 附属设备的质量, kg;
- $n \longrightarrow -$ 个鞍座上地脚螺栓个数,个;

n' — 承受剪应力的地脚螺栓个数(固定端鞍座的地脚螺栓个数),个;

 β —— 附属设备开孔与截面A-A简体中心的夹角,见图B.2;

 σ_1^{l-1} — 在简体截面A-A处最高点的轴向应力,MPa;

 $\sigma_2^{\text{I-I}}$ 在简体截面A-A处最低点的轴向应力,MPa。

注: σ_1^{I-I} , σ_2^{I-I} 加脚标T表示水压试验工况。

本附录使用的其他符号见第7章的符号说明。

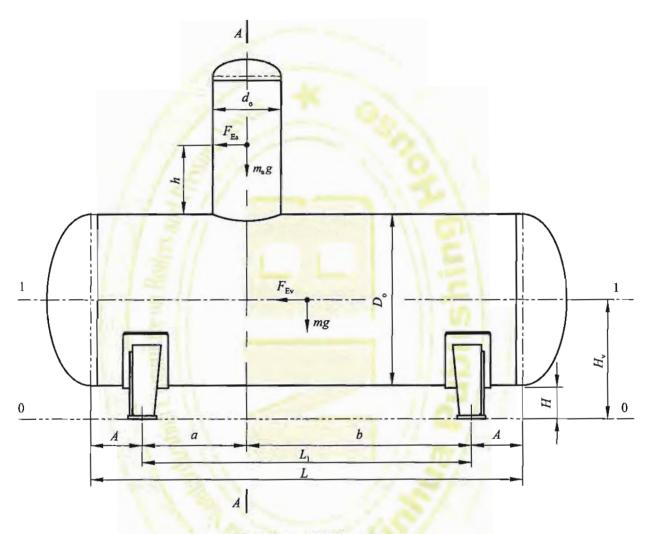


图 B. 1 载荷示意图

B.4 强度及稳定性校核

本节对容器的强度和稳定性校核应分别考虑正常操作、压力试验工况以及有地震载荷和无地震载荷组合的工况。

B. 4. 1 均布载荷和附属设备重力引起的支座反力

支座反力按式(B.1)、式(B.2)计算:

I 支座处:

$$F_{\rm I} = F + F_{\rm wl} + F_{\rm ER}$$
 (B.1)

Ⅱ支座处:

$$F_{\text{II}} = F + F_{\text{wII}} + F_{\text{ER}}$$
 (B.2)

式中:

F ——由均布载荷在支承处引起的支座反力, $F = \frac{mg}{2}$, N;

 F_{wl} 、 F_{wl} ——由附属设备重力在支承处引起的支座反力, $F_{\text{wl}} = \frac{b}{L_{\text{l}}} m_{\text{a}} g$, $F_{\text{wll}} = \frac{a}{L_{\text{l}}} m_{\text{a}} g$, N;

 F_{ER} ——附属设备由地震作用在支承处引起的支座反力, $F_{\text{ER}} = \frac{M_{\text{Ea}}^{1-1}}{L}$,N。

其中:

$$M_{\rm Ea}^{1-1} = F_{\rm Ea} (h + D_{\rm o}/2)$$
, N·mm;

$$F_{\rm Fa} = \alpha_1 m_{\rm a} g$$
 o

- B. 4. 2 圆筒轴向应力
- B. 4. 2. 1 圆筒轴向弯矩计算

圆筒最大轴向弯矩位于中间段极值处、A-A截面或鞍座平面上

a) 圆筒中间段极值处的轴向弯矩,按式(B.3)或式(B.4)计算:

当附属设备位于中间截面的左侧, 其极值点为:

$$X_1 = \frac{F_{\rm t}}{q} - \frac{2}{3}h_{\rm i} - A$$

若满足 $0 < X_1 < a$,则极值处的轴向弯矩为:

$$M_{\text{max}} = q \left[\frac{R_{\text{a}}^2 - h_{\text{i}}^2}{4} - \frac{2}{3} h_{\text{i}} (A + X_1) - \frac{(A + X_1)^2}{2} \right] + F_{\text{I}} X_1 \dots (B.3)$$

当附属设备位于中间截面的右侧, 其极值点为:

$$X_2 = \frac{F_{II}}{a} - \frac{2}{3}h_i - A$$

若满足 $0 < X_2 < b$,则极值处的轴向弯矩为:

$$M_{\text{max}} = q \left[\frac{R_{\text{a}}^2 - h_{\text{i}}^2}{4} - \frac{2}{3} h_{\text{i}} (A + X_2) - \frac{(A + X_2)^2}{2} \right] + F_{\text{II}} X_2 \dots (B.4)$$

b) 若极值处的 X_1 、 X_2 不满足上述条件,则最大轴向弯矩位于 A-A 截面或鞍座平面上。 圆筒A-A截面上的轴向弯矩,按式 (B.5) 计算:

$$M_{\rm max}^{\rm A-A} = M_{\rm q}^{\rm A-A} + M_{\rm w}^{\rm A-A} + \frac{a}{L_{\rm l}} M_{\rm Ea}^{\rm l-l}$$
 (B.5)

式中:

$$M_{q}^{A-A} = \frac{2F}{L + \frac{4}{3}h_{i}} \left[\frac{R_{a}^{2} - h_{i}^{2}}{4} - \frac{2h_{i}}{3}A - \frac{A^{2}}{2} + \frac{aL_{1}}{2} \left(1 - \frac{a}{L_{1}} \right) \right];$$

$$M_{\rm w}^{\rm A-A} = \frac{ab}{L_{\rm l}} m_{\rm a} g \, \circ$$

- c) 鞍座平面上的轴向弯矩,按式(4)计算。
- B. 4. 2. 2 圆筒轴向应力计算
- B. 4. 2. 2. 1 圆筒 A-A 截面上,由压力及轴向弯矩引起的轴向应力,按式(B.6)、式(B.7)计算:圆筒最高点处:

$$\sigma_{\rm l}^{\rm I-I} = \frac{p_{\rm c}R_{\rm a}}{2\delta_{\rm e}} - \frac{M_{\rm max}^{\rm A-A}}{3.14K_{\rm 10}R_{\rm a}^2\delta_{\rm e}} \qquad \qquad \dots$$
 (B.6)

圆筒最低点处:

$$\sigma_2^{\text{I-I}} = \frac{p_c R_a}{2\delta_c} + \frac{M_{\text{max}}^{\text{A-A}}}{3.14K_{11}R_a^2\delta_c} \qquad \dots$$
 (B.7)

- 注:该轴向应力仅为简化为简支梁计算时得到的该截面的薄膜应力,局部应力的计算需要采用其他方法(如有限元数值分析)进行。
- **B.** 4. 2. 2. 2 若极值处的 $X_1 \, \times \, X_2$ 满足 B.4.2.1 a) 的条件,则在极值处,由压力及轴向弯矩引起的轴向应力,按式(5)、式(6) 计算,式中的 M_1 由 M_{max} 代替。
- **B.** 4. 2. 2. 3 若极值处的 X_1 、 X_2 满足 B.4.2.1 b)上述条件,则最大轴向弯矩位于圆筒鞍座截面或 A-A 截面上,圆筒鞍座截面上由压力及轴向弯矩引起的轴向应力,按式(7)、式(8)计算,式中的 M_2 由 M_{max} 代替。
- B. 4. 2. 3 圆筒轴向应力校核

圆筒轴向应力应满足表B.1的要求。

工况	内压设计	外压设计	最大应力校核条件
操作工况(盛装物料)	加压	未加压	拉应力: $\max\left\{\sigma_{1},\sigma_{2},\sigma_{1}^{\text{I-I}},\sigma_{2}^{\text{I-I}},\sigma_{3},\sigma_{4}\right\} \leqslant K_{0}\phi[\sigma]^{\text{t}}$
	未加压	加压	压应力: $\left \min\left\{\sigma_{1},\sigma_{2},\sigma_{1}^{\text{I-I}},\sigma_{2}^{\text{I-I}},\sigma_{3},\sigma_{4}\right\}\right \leq [\sigma]_{\text{ac}}^{\text{t}}$
水压试验工况 (充满水)	加压		拉应: $\max\left\{\sigma_{\text{T1}}, \sigma_{\text{T2}}, \sigma_{\text{T1}}^{\text{L1}}, \sigma_{\text{T2}}^{\text{L1}}, \sigma_{\text{T3}}, \sigma_{\text{T4}}\right\} \leqslant 0.9 \phi R_{\text{eL}}(R_{\text{p0.2}})$
	未	加压	压应: $\left \min\left\{\sigma_{T_1},\sigma_{T_2},\sigma_{T_1}^{I-1},\sigma_{T_2}^{I-1},\sigma_{T_3},\sigma_{T_4}\right\}\right \leq [\sigma]_{ac}$

表 B. 1 圆筒轴向应力的校核条件

- B. 4.3 圆筒切向剪应力及封头应力
- B. 4. 3. 1 应力计算

应力 τ 、 τ_n 按式(9)~(11)进行计算,式中的F由 F_1 、 F_2 中较大值代替。

B. 4. 3. 2 应力校核

应力的校核按 7.7.3.2、7.7.3.4 的规定进行, 其中 $[\sigma]^{1}$ 由 $K_{0}[\sigma]^{1}$ 代替。

- B. 4. 4 圆筒周向应力
- B. 4. 4. 1 圆筒周向应力计算

圆筒周向应力 $\sigma_{s} \sim \sigma_{g}$ 按式(16)~(25)进行计算,式中的F由 F_{I} 、 F_{II} 中较大值代替。

B. 4. 4. 2 圆筒周向应力校核

圆筒周向应力的校核按 7.7.4.3 的规定进行, 其中 $[\sigma]$ 由 $K_0[\sigma]$ 代替。

- B. 4. 5 鞍座应力
- B. 4. 5. 1 腹板水平拉应力及强度校核

腹板水平分力 F_s 按式(26)进行计算,式中的F由 F_I 、 F_{II} 中较大值代替。

腹板水平方向的拉应力 σ , 按式 (27)、式 (28) 进行计算。应力的校核按式 (29) 进行,其中, $[\sigma]_{sa}$ 由 $K_0[\sigma]_{sa}$ 代替。

B. 4. 5. 2 鞍座压缩应力及强度校核

- a) 由温度变化引起简体伸缩时产生的支座腹板与筋板组合截面内产生的压应力 σ_{sa}^{t} 按式(32)进行计算,式中的F由 F_{l} 、 F_{l} 中较大值代替。应力的校核按式(33)进行。
- b) 地震载荷工况下,由轴向弯矩及重力载荷作用支座腹板与筋板组合截面内产生的压应力 σ_{sa} 按式 $(B.8) \sim (B.9)$ 计算:

当地震载荷引起的水平地震力之半不大于两鞍座中任意一个鞍座底板与基础静摩擦力 $(F_{\mathbb{P}}/2 \leq Ff)$ 时:

$$\sigma_{\rm sa} = -\frac{F'}{A_{\rm sa}} - \frac{F_{\rm E}H}{2Z_{\rm c}} - \frac{M_{\rm Ev}^{0-0} + M_{\rm Ea}^{0-0}}{A_{\rm sa}L_{\rm l}} \qquad \dots$$
 (B.8)

当地震载荷引起的水平地震力之半大于任意一个鞍座底板与基础静摩擦力:

$$\sigma_{\rm sa} = -\frac{F'}{A_{\rm sa}} - \frac{\left(F_{\rm E} - F'' f_{\rm s}\right) H}{Z_{\rm r}} - \frac{M_{\rm Ev}^{0-0} + M_{\rm Ea}^{0-0}}{A_{\rm sa} L_{\rm l}} \quad \dots \tag{B.9}$$

式中:

 $F_{\rm E}=F_{\rm Ea}+F_{\rm Ev}$;

 $F' = \max\{F_{I}, F_{II}\};$

 $F'' = \min\{F_{\mathrm{I}}, F_{\mathrm{II}}\};$

 $M_{\rm Ea}^{0-0} = F_{\rm Ea}(h+D_{\rm o}+H)$;

 $M_{\rm EV}^{0-0} = F_{\rm EV} H_{\rm V}$

应力校核应满足:

$$|\sigma_{\rm sa}| \leq K_0[\sigma]_{\rm sa}$$

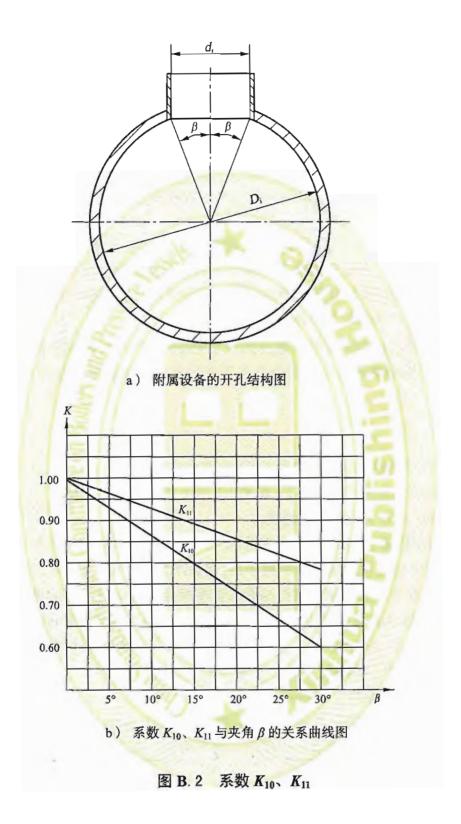
- B. 4. 5. 3 地震引起的地脚螺栓应力
- B. 4. 5. 3. 1 横向倾覆力矩按式(B.10)进行计算:

$$M_{\rm F}^{0-0} = M_{\rm Fy}^{0-0} + M_{\rm Fa}^{0-0}$$

B. 4. 5. 3. 2 由倾覆力矩引起的地脚螺栓拉应力

地脚螺栓拉应力按式(B.11)进行计算:

$$\sigma_{bi} = \frac{M_{E}^{0-0} - \frac{mg \cdot l_{i}}{2}}{n \cdot L_{i} \cdot A_{bi}}$$
(B.11)


应力校核应满足: $\sigma_{bt} \leq K_0[\sigma]_{bt}$ 。

B. 4. 5. 3. 3 由水平地震力引起的地脚螺栓剪应力

当地震载荷引起的水平地震力大于底板与基础的静摩擦力,即 $F_E > (F_I + F_{II}) f$ 时,地脚螺栓剪应力按式(B.12)进行计算:

$$\tau_{bt} = \frac{F_{E} - (F_{I} + F_{II}) f_{s}}{n' A_{bt}}$$
 (B.12)

应力校核应满足: $\tau_{\rm bt} \leq 0.8 K_{\rm o} [\sigma]_{\rm bt}$ 。

附录C

(资料性附录)

非对称设置双鞍座卧式容器的强度与稳定性校核计算

C. 1 范围

- C. 1. 1 本附录规定了可承受多个集中载荷的非对称双鞍座支承卧式容器的强度及稳定性校核计算方法。
- C. 1. 2 容器上可设有或不设有各种附属设备(如精馏塔、除氧头和搅拌设备)。如设有附属设备, 当地震设防烈度大于 6 度时,各附属设备与容器连接后的总垂直高度应不大于 10m。
- C. 1. 3 集中载荷的作用线及附属设备的轴线应与容器简体轴线正交且与地面垂直;与容器连接的附属设备在容器简体上的开孔直径与简体直径之比不大于 0.5。
- C. 2 计算时将卧式容器简化为承受均布载荷的双支承外伸梁,同时把各附属设备视为作用在梁上的附加集中载荷,附加集中载荷是指由附属设备的重力及地震影响所产生的作用在梁上的集中载荷。

C. 3 符号

 F_{Ia} 、 F_{IIa} — 均布附加重量载荷在I支座和II支座中产生的反力, N;

 F_{If} 、 F_{IIf} — 垂直附加集中载荷在I支座和II支座中产生的反力, N;

 $F_{\rm F}$ — 作用于卧式容器上的总水平地震力, N;

 F_{Fak} — 第k个附属设备受到的地震力, N;

 $M_{\text{Fai}}^{\text{I-I}}$ — 第i个附属设备所受地震力相对于1-1截面产生的弯矩,N·mm;

 M_{Emax} — 两相邻集中载荷或集中载荷与相邻鞍座间由地震载荷产生的最大弯矩, $N \cdot mm$;

 $M_{i(max)}$ —— 两相邻集中载荷或集中载荷与相邻鞍座间的最大弯矩, $N\cdot mm$;

 $M_{\rm I}$ —— I支座处的弯矩, N·mm;

M_{II} —— II支座处的弯矩, N·mm;

 M_{max} — 简体上的最大弯矩, $N \cdot \text{mm}$;

 e_k — 第k个附属设备重心到简体上表面的距离,见图C.1, mm;

 f_i — 作用在简体上的第i个垂直集中载荷,向下为正,向上为负,N;

k—— 第k个附属设备, k=1, 2······:

l_i — 第i个垂直集中载荷力离I支座的距离,集中载荷fi在I支座右边时, l_i 正值, 否则 l_i 取负值, mm;

本附录使用的其他符号见第7章和附录B的符号说明。

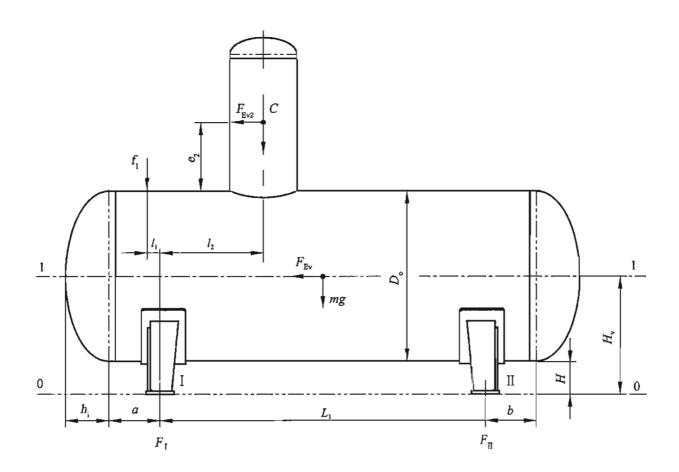


图 C.1

C.4 强度及稳定性校核

本节对卧式容器的强度和稳定性校核应分别考虑正常操作、压力试验工况以及有地震载荷作用和无地震载荷作用的工况。

C. 4.1 鞍座反力的计算

C. 4. 1. 1 均布重量载荷产生的鞍座反力

容器中均布重量载荷在I支座处产生的反力为:

$$F_{\text{Iq}} = q \left[\frac{2h_{\text{I}}}{3} \left(1 + \frac{a}{L_{\text{I}}} - \frac{b}{L_{\text{I}}} \right) + \frac{L_{\text{I}}}{2} \left(1 + \frac{a}{L_{\text{I}}} \right)^{2} - \frac{b^{2}}{2L_{\text{I}}} \right] \dots$$
 (C.1)

容器中均布重量载荷在II支座处产生的反力为:

$$F_{\text{Uq}} = q \left[\frac{.2h_{\text{I}}}{3} \left(1 + \frac{b}{L_{\text{I}}} - \frac{a}{L_{\text{I}}} \right) + \frac{L_{\text{I}}}{2} \left(1 + \frac{b}{L_{\text{I}}} \right)^{2} - \frac{a^{2}}{2L_{\text{I}}} \right]$$
 (C.2)

C. 4.1.2 垂直集中载荷产生的鞍座反力

为平衡所有集中载荷而需要的I支座处的支反力为:

$$F_{\text{lf}} = \sum_{i} f_{i} \left(1 - \frac{l_{i}}{L_{1}} \right)$$
 (C.3)

为平衡所有集中载荷而需要的II支座处的支反力为:

$$F_{\text{IIf}} = \sum_{l} f_{l} \frac{l_{l}}{L_{l}} \qquad \qquad \dots$$
 (C.4)

C.4.1.3 作为集中载荷的第k个附属设备所受地震力:

$$F_{\text{Eak}} = \alpha_1 \cdot m_{\text{ak}} \cdot g \qquad \dots \qquad (C.5)$$

第 k 个 附属设备所受地震力产生的轴向弯矩:

$$M_{\rm Eak}^{\rm I-1} = F_{\rm Eak} \left(e_{\rm k} + \frac{D_{\rm o}}{2} \right)$$
 (C.6)

地震载荷在支承处引起的支座反力:

$$F_{\rm ER} = \frac{\sum_{k} M_{\rm Eak}^{1-1}}{L_{\rm I}} \qquad \qquad \cdots$$

C. 4. 1. 4 鞍座反力

I 支座和 II 支座的反力分别按式(C.8)和式(C.9)计算。

$$F_{\rm I} = F_{\rm IG} + F_{\rm IF} + F_{\rm ER} \qquad \qquad (C.8)$$

C. 4. 2 圆筒轴向应力计算和校核

C. 4. 2. 1 两个鞍座处的弯矩分别按式(C.10)和式(C.11)计算:

$$M_{I} = -q \left[\frac{a^{2}}{2} + \frac{2}{3} h_{i} \cdot a - \frac{R_{a}^{2} - h_{i}^{2}}{4} \right] + \sum_{i} (f_{i} \cdot l_{i}) - \left| \sum_{i} M_{Eai} \right| \dots$$
 (C.10)

式中, f_i 为作用在I支座中心线左面的所有垂直集中力,而 M_{Eai} 为作用在I支座中心线左面的所有附属设备所受到的地震弯矩。

$$M_{II} = -q \left[\frac{b^2}{2} + \frac{2}{3} h_i \cdot b - \frac{R_a^2 - h_i^2}{4} \right] + \sum_{i} \left[\left(L_i - l_i \right) \cdot f_i \right] - \left| \sum_{i} M_{Eai} \right| \dots$$
 (C.11)

式中, f_i 为作用在II支座中心线右面(见图C.1)的所有垂直集中力,而 M_{Eai} 为作用在I支座中心线右面的所有附属设备所受到的地震弯矩。

C. 4. 2. 2 两鞍座间的最大弯矩为:

$$M_{\text{max}} = \max_{i} \left\{ M_{i(\text{max})} \right\} \tag{C.12}$$

其中, Mi(max)对所有集中载荷, 求得的与之相邻的集中载荷或鞍座之间的最大弯矩。

C. 4. 2. 3 两鞍座间最大弯矩处筒体上的轴向应力按式(C.13)、式(C.14)计算: 圆筒最高点处:

$$\sigma_{1} = \frac{p_{c}R_{s}}{2\delta_{c}} - \frac{M_{\text{max}}}{3.14K_{10}R_{c}^{2}\delta_{c}}$$
 (C.13)

圆筒最低点处:

$$\sigma_2 = \frac{p_c R_a}{2\delta_c} + \frac{M_{\text{max}}}{3.14K_{11}R_a^2 \delta_c}$$
 (C.14)

C. 4. 2. 4 I 支座处筒体上的轴向应力按式(C.15)、式(C.16)计算:

圆筒最高点处:

$$\sigma_3^{I-I} = \frac{p_c R_a}{2\delta_a} - \frac{M_1}{3.14K_1 R_c^2 \delta_a} \qquad \dots$$
 (C.15)

圆筒最低点处:

$$\sigma_4^{I-I} = \frac{p_c R_a}{2\delta_c} + \frac{M_1}{3.14K_2 R_a^2 \delta_c}$$
 (C.16)

C. 4. 2. 5 II 支座处筒体上的轴向应力按式 (C.17)、式 (C.18) 计算:

圆筒最高点处:

$$\sigma_3^{\text{II-II}} = \frac{p_c R_a}{2\delta_c} - \frac{M_{\text{II}}}{3.14K_1 R_s^2 \delta_c} \qquad \dots$$
 (C.17)

圆筒最低点处:

$$\sigma_4^{\text{II-II}} = \frac{p_c R_a}{2S_c} + \frac{M_{\text{II}}}{3.14K_2 R_a^2 S_c} \qquad \dots$$
 (C.18)

C. 4. 2. 6 圆筒轴向应力校核

圆筒轴向应力应满足表 C.1 的要求。

表 C.1 圆筒轴向应力的校核条件

工 况	内压设计	外压设计	最大应力校核条件
操作工况	加压	未加压	拉应力: $\max\left\{\sigma_{1}, \sigma_{2}, \sigma_{3}^{H}, \sigma_{4}^{H}, \sigma_{3}^{HH}, \sigma_{4}^{HH}\right\} \leq K_{0}\phi[\sigma]^{t}$
(盛装物料)	未加压	加压	压应力: $\left \min\left\{\sigma_{_{\! 1}},\sigma_{_{\! 2}},\sigma_{_{\! 3}}^{_{\! 1-\!1}},\sigma_{_{\! 4}}^{_{\! 1-\!1}},\sigma_{_{\! 3}}^{_{\! 1-\!1}},\sigma_{_{\! 4}}^{_{\! 1-\!1}}\right\}\right \leq [\sigma]_{ac}^t$
水压试验工况	加压未加压		拉应力: $\max\left\{\sigma_{\text{T1}},\sigma_{\text{T2}},\sigma_{\text{T3}}^{\text{I-I}},\sigma_{\text{T4}}^{\text{II-II}},\sigma_{\text{T3}}^{\text{II-II}},\sigma_{\text{T4}}^{\text{II-II}}\right\} \leqslant 0.9\phi R_{\text{eL}}(R_{\text{p0.2}})$
(充满水)			压应力: $\min\left\{\sigma_{T_1}, \sigma_{T_2}, \sigma_{T_3}^{H}, \sigma_{T_4}^{H}, \sigma_{T_3}^{HH}, \sigma_{T_4}^{HH}\right\} \leq [\sigma]_{ac}$

C. 4. 3 圆筒切向剪应力及封头应力

C. 4. 3. 1 应力计算

圆筒切向剪应力及封头剪应力 τ 、 τ_{1} 按式(9)~(11)进行计算,式中的F分别按 F_{1} 、 F_{11} 代替,相应地以 α 值和b值替代表 4 中的A值后确定系数 K_{3} 和 K_{4} 。

C. 4. 3. 2 应力校核

圆筒切向剪应力及封头应力的校核按7.7.3.2和7.7.3.4的规定进行,其中 $[\sigma]$ 由 $K_{\alpha}[\sigma]$ 代替。

- C. 4. 4 圆筒周向应力
- C. 4. 4. 1 圆筒周向应力计算

圆筒周向应力 $\sigma_5 \sim \sigma_8$ 按式(16) \sim (25)进行计算,式中的F由 F_1 、 F_{11} 中较大值代替。

C. 4. 4. 2 圆筒周向应力校核

圆筒周向应力的校核按7.7.4.3的规定进行,其中 $[\sigma]$ 由 $K_{\alpha}[\sigma]$ 代替。

C. 4. 5 鞍座应力

C. 4. 5. 1 腹板水平分力及强度校核

腹板水平分力F。按式(26)进行计算,式中的F由F、F、中较大值代替。

腹板水平方向的拉应力 σ_9 按式(27)、式(28)进行计算。应力的校核按式(29)进行,其中 $[\sigma]_{sa}$ 由 $K_0[\sigma]_{sa}$ 代替。

C. 4. 5. 2 鞍座压缩应力及强度校核:

- a) 由温度变化引起筒体伸缩时,支座腹板与筋板组合截面内所产生的压应力 σ_{sa}^t 按式(32)进行计算,式中的 F 由 F_{l} 、 F_{ll} 中较大值代替。应力的校核按式(33)进行;
- b) 地震载荷工况下,由轴向弯矩及重力载荷作用,在支座腹板及筋板组合截面内产生的压应力 σ_{sa} 按式 (C.19)、式 (C.20) 计算:

当地震载荷引起的水平地震力之半不大于两鞍座任意一个鞍座底板与基础静摩擦力($F_{\rm E}/2$ $\leq F_{\rm f}$)时:

$$\sigma_{\rm sa} = -\frac{F'}{A_{\rm sa}} - \frac{F_{\rm E}H}{2Z_{\rm r}} - \frac{M_{\rm Ev}^{0-0} + M_{\rm Ea}^{0-0}}{A_{\rm sa}L_{\rm l}} \qquad (C.19)$$

当地震载荷引起的水平地震力之半大于任意一个鞍座底板与基础静摩擦力:

$$\sigma_{\rm sa} = -\frac{F'}{A_{\rm sa}} - \frac{(F_{\rm E} - Ff_{\rm s})H}{Z_{\rm r}} - \frac{M_{\rm Ev}^{0-0} + M_{\rm Ea}^{0-0}}{A_{\rm sa}L_{\rm l}}$$
 (C.20)

式中:

$$F_{\rm E} = \sum_{i} F_{\rm Ea} + F_{\rm Ev} ;$$

 $F' = \max\{F_{\mathrm{I}}, F_{\mathrm{II}}\};$

 $F=\min\{F_{\rm I}, F_{\rm II}\};$

$$M_{\rm Ea}^{\rm 0-0} = \sum_{\rm L} F_{\rm Eak} \left(e_{\rm k} + D_{\rm o} + H \right)$$
 ;

$$M_{\rm Ev}^{0-0} = F_{\rm Ev} H_{\rm v} \circ$$

应力校核应满足条件:

$$\left|\sigma_{\rm sa}\right| \leq K_{\rm o} \left[\sigma\right]_{\rm sa}$$
 (C.21)

C. 4. 5. 3 地震引起的地脚螺栓应力

a) 横向倾覆力矩按式(C.22)进行计算:

$$M_{\rm E}^{0-0} = M_{\rm Ev}^{0-0} + M_{\rm Ea}^{0-0}$$
 (C.22)

b) 由倾覆力矩引起的地脚螺栓拉应力

地脚螺栓拉应力按式(C.23)进行计算:

$$\sigma_{bi} = \frac{M_{E}^{0-0} - \frac{mg \cdot l}{2}}{n \cdot l \cdot A_{bi}} \qquad \dots$$
 (C.23)

应力校核应满足:

$$\sigma_{\rm bt} \leqslant K_{\scriptscriptstyle 0} [\sigma]_{\scriptscriptstyle \rm bt}$$

c) 由水平地震力引起的地脚螺栓剪应力

 $F_{\rm E} > (F_{\rm I} + F_{\rm II}) f$ 时,应校核地脚螺栓的剪切强度,地脚螺栓剪应力按式(C.24)计算:

$$\tau_{\rm bt} = \frac{F_{\rm E} - (F_{\rm I} + F_{\rm II}) f_{\rm s}}{n' A_{\rm t.}} \qquad \qquad \dots$$
 (C.24)

地脚螺栓的剪应力应满足:

$$\tau_{\rm bt} \leq 0.8 K_{\rm 0} \left[\sigma\right]_{\rm bt}$$
 (C.25)

附录D

(资料性附录)

对称设置三鞍座卧式容器的强度与稳定性校核计算

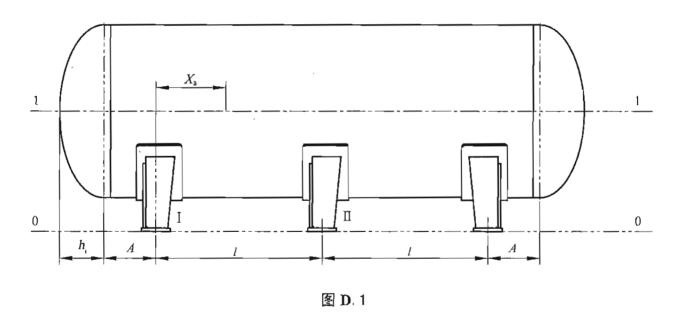
- **D**. 1 本附录规定了相对于跨中截面对称布置的三鞍座卧式容器的强度及稳定性校核计算方法。
- D. 2 本附录的计算方法中, 仅考虑了承受均布载荷的卧式容器。

D.3 符号

 l_1 — 简体轴线两侧的鞍座地脚螺栓间距, mm;

l-- 相邻两鞍座中心线间距, 见图D.1, mm;

M₁—— I支座处的弯矩, N·mm;


 $M_{\rm II}$ —— II支座处的弯矩, N·mm;

 M_{max} — 两鞍座间筒体上的最大弯矩, N·mm;

 X_a — 最大弯矩作用点到支座 I 的距离, mm。

本附录使用的其他符号见第7章、附录B和附录C的符号说明。

D. 4 强度及稳定性校核

D. 4.1 鞍座反力的计算

容器中均布重量载荷在I支座处产生的反力为:

$$F_{1} = \frac{mg}{2(l+A) + \frac{4}{3}h_{i}} \left[\frac{A}{l} \left(\frac{3}{4}A + h_{i} \right) + \frac{3}{8l} \left(h_{i}^{2} - R_{a}^{2} \right) + A + \frac{2}{3}h_{i} + \frac{3}{8}l \right] \dots$$
 (D.1)

容器中均布重量载荷在II支座处产生的反力为:

$$F_{II} = \frac{mg}{2(l+A) + \frac{4}{3}h_{i}} \left[\frac{5l}{4} - \frac{3A^{2}}{2l} - \frac{2h_{i}A}{l} - \frac{3}{4l}(h_{i}^{2} - R_{a}^{2}) \right] \dots$$
 (D.2)

- D 4.2 圆筒轴向应力计算和校核
- D. 4. 2. 1 I 支座和 II 支座处的弯矩分别按式(D.3)和式(D.4)计算:

$$M_{\rm I} = -\frac{mg}{2(l+A) + \frac{4}{3}h_{\rm i}} \left[\frac{A^2}{2} + \frac{2}{3}h_{\rm i}A - \frac{R_{\rm a}^2 - h_{\rm i}^2}{4} \right] \dots$$
 (D.3)

$$M_{II} = \frac{mg}{2(l+A) + \frac{4}{3}h_{i}} \left[\frac{Ah_{i}}{3} + \frac{A^{2}}{4} - \frac{l^{2}}{8} - \frac{R_{a}^{2} - h_{i}^{2}}{8} \right] \dots$$
 (D.4)

D. 4. 2. 2 在 I 支座和 II 支座之间的最大弯矩

按式(D.5)计算Xa:

$$X_{a} = \frac{A}{l} \left(\frac{3}{4} A + h_{i} \right) + \frac{3}{8l} \left(h_{i}^{2} - R_{a}^{2} \right) + \frac{3l}{8} \qquad \dots$$
 (D.5)

若 $0 < X_a < l$,按式(D.6)计算I支座和II支座之间的最大弯矩:

$$M_{\text{max}} = \frac{mg}{2(l+A) + \frac{4}{3}h_i} \left[\frac{1}{4} \left(R_a^2 - h_i^2 \right) - \frac{2h_i}{3} \left(A + X_a \right) - \frac{\left(A + X_a \right)^2}{2} \right] + F_1 X_a \quad ... \quad (D.6)$$

若 $X_a < 0$ 或 $X_a > l$,则:

$$M_{\text{max}} = \max\left\{M_{\text{I}}, M_{\text{II}}\right\} \qquad \dots \qquad (D.7)$$

D. 4. 2. 3 两鞍座间最大弯矩处筒体上的轴向应力按式(D.8)、式(D.9)计算: 圆筒最高点处:

$$\sigma_{1} = \frac{p_{c}R_{a}}{2\delta_{c}} - \frac{M_{\text{max}}}{3.14R^{2}\delta_{c}} \qquad \dots$$
 (D.8)

圆筒最低点处:

$$\sigma_2 = \frac{p_c R_a}{2\delta_e} + \frac{M_{\text{max}}}{3.14R_a^2 \delta_c} \qquad \qquad \dots$$
 (D.9)

D. 4. 2. 4 I 支座处筒体上的轴向应力按式(D.10)、式(D.11)计算:

圆筒最高点处:

$$\sigma_3^{1-1} = \frac{p_c R_a}{2\delta_c} - \frac{M_1}{3.14K_1 R_a^2 \delta_c} \qquad \dots$$
 (D.10)

圆筒最低点处:

$$\sigma_4^{1-1} = \frac{p_e R_a}{2\delta_e} + \frac{M_I}{3.14K_2 R_a^2 \delta_e}$$
 (D.11)

D. 4. 2. 5 II 支座处筒体上的轴向应力按式(D.12)、式(D.13)计算:

圆筒最高点处:

$$\sigma_3^{\text{II-II}} = \frac{p_c R_{\text{b}}}{2\delta_e} - \frac{M_{\text{II}}}{3.14K_1 R_{\text{b}}^2 \delta_c} \qquad \dots$$
 (D.12)

圆筒最低点处:

$$\sigma_4^{\text{U-U}} = \frac{p_c R_a}{2\delta_e} + \frac{M_{11}}{3.14K_2 R_a^2 \delta_e} \qquad \dots$$
 (D.13)

注: II 支座处轴向应力计算中的系数 K_1 和 K_2 均按 $A > R_a/2$ 查取。

D. 4. 2. 6 圆筒轴向应力校核

圆筒轴向应力应满足表 D.1 的要求。

表 D. 1 圆筒轴向应力的校核条件

工况	内压设计	外压设计	最大应力校核条件
操作工况	加压	未加压	拉应力: $\max\left\{\sigma_{_{1}},\sigma_{_{2}},\sigma_{_{3}}^{_{1}},\sigma_{_{4}}^{_{1}},\sigma_{_{3}}^{_{3}},\sigma_{_{4}}^{_{4}}\right\} \leq \phi[\sigma]^{\iota}$
(盛装物料)	未加压	加压	压应力: $\min\left\{\sigma_{_{\! 1}},\sigma_{_{\! 2}},\sigma_{_{\! 3}}^{_{\! 1\text{-}1}},\sigma_{_{\! 4}}^{_{\! 1\text{-}1}},\sigma_{_{\! 3}}^{_{\! 1\text{-}1\text{-}1}},\sigma_{_{\! 4}}^{_{\! 1\text{-}1\text{-}1}}\right\} \leq [\sigma]_{\mathrm{ac}}^{\mathrm{t}}$
水压试验工况	加压		拉应力: $\max\left\{\sigma_{_{\mathrm{T}1}},\sigma_{_{\mathrm{T}2}},\sigma_{_{\mathrm{T}3}}^{_{\mathrm{I-I}}},\sigma_{_{\mathrm{T}4}}^{_{\mathrm{I-II}}},\sigma_{_{\mathrm{T}3}}^{_{\mathrm{I-II}}},\sigma_{_{\mathrm{T}4}}^{_{\mathrm{I-II}}}\right\}\leqslant0.9\phi R_{\mathrm{cL}}(R_{\mathrm{p0.2}})$
(充满水)	未加	加压	压应力: $\left \min\left\{\sigma_{T_1},\sigma_{T_2},\sigma_{T_3}^{I-1},\sigma_{T_4}^{I-1},\sigma_{T_3}^{I-1},\sigma_{T_4}^{I-1}\right\}\right \leq [\sigma]_{\mathrm{ac}}$

- D. 4.3 圆筒切向剪应力及封头应力
- D. 4. 3. 1 圆筒切向剪应力及封头应力计算

圆筒切向剪应力及封头应力计算 τ 、 τ ,按式(9)~(11)进行计算,式中的F由F代替。

D. 4. 3. 2 圆筒及封头切向剪应力校核

圆筒及封头切向剪应力的校核按7.7.3.2、7.7.3.4的规定进行。

- D. 4. 4 圆筒周向应力
- D. 4. 4. 1 圆筒周向应力计算

圆筒周向应力 $\sigma_5 \sim \sigma_8$ 按式 (16) \sim (25) 进行计算,式中的 F 由 $F_{\rm II}$ 、 $F_{\rm II}$ 中较大值代替。

D. 4. 4. 2 圆筒周向应力校核

圆筒周向应力的校核按7.7.4.3的规定进行。

- D. 4. 5 鞍座应力
- D. 4. 5. 1 腹板水平分力及强度校核:
 - a) 腹板水平分力 F_s 按式(26)进行计算,式中的F由 F_1 、 F_{11} 中较大值代替;
 - b)腹板水平方向的拉应力 σ 。按式(27)、式(28)进行计算。应力校核按式(29)进行。
- **D**. 4. 5. 2 由温度变化引起圆筒体伸缩时产生的支座腹板与筋板组合截面的压应力 σ_{sa}^{t} 按式(32)计算。式中,F 取 F_{I} 。计算得到的应力按式(33)进行校核。
- D. 4. 6 对于本附录所述的三鞍座卧式容器,应限制地基的不平度以及两相邻鞍座在安装时存在的垂直误差或非均匀沉降,以避免由此产生的附加支座反力以及在容器中所产生的附加弯矩。两相邻鞍座的允许垂直偏移量可由式(D.14)计算得到:

式中,

c---系数, 其值可取为0.2~0.5;

其他符号说明同D.3。